【摘 要】
:
金刚石具有高硬度,高耐磨性,高导热等特征,在非铁合金加工,石油天然气、矿业开采领域具有很大的应用需求。在现代工业中发挥着越来越重要的作用。本课题采用高温高压法分别制备了以Ti-B基和Ti-Si基结合剂的中介结合型聚晶金刚石,其中Ti-Si基分为Ti-Si、TiC-Si和Ti3SiC2-Si三种结合剂。探究了烧结温度、结合剂体系及含量对聚晶金刚石性能的影响。研究发现两体系的聚晶金刚石的致密度、硬度、
论文部分内容阅读
金刚石具有高硬度,高耐磨性,高导热等特征,在非铁合金加工,石油天然气、矿业开采领域具有很大的应用需求。在现代工业中发挥着越来越重要的作用。本课题采用高温高压法分别制备了以Ti-B基和Ti-Si基结合剂的中介结合型聚晶金刚石,其中Ti-Si基分为Ti-Si、TiC-Si和Ti3SiC2-Si三种结合剂。探究了烧结温度、结合剂体系及含量对聚晶金刚石性能的影响。研究发现两体系的聚晶金刚石的致密度、硬度、抗弯强度和磨耗比随烧结温度的升高呈现出先增大后平缓的趋势。Ti-B基的聚晶金刚石在1500℃烧结的性能最好。抗弯强度达到498.37 MPa、致密度99.3%、磨耗比3.8、硬度48.5 GPa以及韧性3.4 MPa·m1/2。Ti-Si基聚晶金刚石中Ti-Si结合剂聚晶金刚石在1450℃时各项综合性能最佳。磨耗比3.5、抗弯强度536 MPa、硬度53.2 GPa、韧性5.4 MPa·m1/2;TiC-Si结合剂聚晶金刚石在1400℃烧结的各项综合性能最佳。磨耗比3.8、抗弯强度470 MPa、硬度58.9 GPa、韧性4.8 MPa·m1/2;Ti3SiC2-Si结合剂聚晶金刚石在1500℃烧结的各项综合性能最佳。磨耗比4.2、抗弯强度521 MPa、硬度54.3 GPa、韧性8.6 MPa·m1/2。以上所有结合剂体系中Ti3SiC2-Si的性能最好,主要优势在高韧性、高磨耗比和相对较高的抗弯强度。主要是Ti3SiC2兼具陶瓷高强度和金属高韧性的优势。将温度控制在1500℃,能保证在聚晶金刚石中遗留部分Ti3SiC2,为聚晶金刚石提供其高的韧性优势。也能在烧结过程中Ti3SiC2先分解形成TiC和Ti-Si,Ti-Si和金刚石又在高温下反应形成TiC和SiC的高强度中介相。通过二者的协同效应达到了一个相对优秀的综合性能。
其他文献
本文针对核聚变包层模块候选结构材料低活化铁素体/马氏体钢(Reduced-activation ferritic-martensitic steels RAFM)和 316L 奥 氏体不锈钢的异种搅拌摩擦焊接工艺(Friction stir welding,FSW)进行了研究,获得了成型良好、无缺陷的接头。利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)表征和分
纳米颗粒作为一种经济性好且环保的纳米材料,具有体积小、比表面大等特点,常被作为润滑添加剂应用在摩擦学领域。然而,目前实验测试技术仅能够深入原子、分子尺度揭示纳米颗粒产生的微观现象,对于纳米颗粒的摩擦润滑作用机理尚不清楚。本篇论文主要以纳米颗粒作为研究对象,借助分子动力学模拟方法,从纳米尺度上揭示纳米颗粒在摩擦润滑中的作用机制,为纳米流体润滑中减摩抗磨机制提供了一定地理论依据。本文基于纳米尺度Cou
物体之间的摩擦不仅会消耗能源,同时长时间的摩擦会导致磨损加剧从而造成失效,如果能够有效的减少物体之间的摩擦不仅可以减少有效功的损耗,同时也能延长失效时间。研究表明石墨烯和四氧化三铁粒子均具有良好的润滑性能,由于纳米粒子自身的特性使得其在润滑油中难以稳定分散,这会影响其良好的摩擦学性能,所以本文采用了几种不同的改性方法对石墨烯负载四氧化三铁粒子进行了表面改性,并对其摩擦学性能进行了研究。首先,采用液
三明治结构广泛用于航空航天和交通运输领域。飞机通常在潮湿的环境中工作,密封的六边形蜂窝芯材使得凝聚冷却的水分无法被排出,长时间下大大降低了蜂窝结构的力学性能。目前受折纸启发的折叠芯材已得到广泛地研究,由于开放通道的存在避免了水分积累的问题。并且通过将片材折叠成三维结构大大降低了制造成本。但是折叠芯通常在压缩载荷下的能量吸收较低。因此,避免水分积累并提高折叠芯的能量吸收是目前亟待解决的问题。本文通过
单晶碳化硅作为典型的第三代半导体材料,凭借其优异于传统硅材料的高击穿电压、高热导率等物理特性,在高温、高压、高频、抗辐射、大功率等电子传感器件的研发制备中得到广泛应用,是航空、军事、核能和民用尖端技术中不可或缺的重要材料。但是碳化硅硬度高、脆性大等特点,为单晶碳化硅的加工制备带来很大挑战,限制了碳化硅相关研究技术成果的转化。因此,研究单晶碳化硅加工机理,来改善其加工工艺,实现单晶碳化硅高精度低损伤
自从2004年石墨烯于实验中第一次被发现以来,石墨烯、二硫化钼(Mo S2)、硒化锡(Sn Se)以及黑磷等二维材料受到了极大的关注。二维材料在单层或少层的情况下表现出了与其体材料完全不同而又极具研究前景的物理化学性质。二维纳米材料表现出的优异光电性质和直接带隙现象均受到原子层数和厚度的调控。目前制备二维材料的方法均无法精确获得指定层数的材料样品。本课题组此前提出了基于AFM的厚度可控逐层机械减薄
石墨烯因其独特的结构而具有优异的力学性能和物理化学性质,被誉为金属基复合材料理想的增强相。但在铝基复合材料研究工作中发现,石墨烯与金属铝润湿性差,分散过程中容易发生团聚或结构被破坏。另一方面,目前普遍采用的石墨烯/铝基复合材料的制备方法—粉末冶金法产率较低,难以实现规模化生产。因此,寻求一种高效率制备具有优良力学性能的石墨烯/铝基复合材料的方法是本文的研究重点。本文首先分别使用冷冻干燥和喷雾干燥技
作为最常见的颗粒增强铝基复合材料,Al/4H-SiC和Al/α-Al2O3复合材料具有良好的力学性能,然而其界面反应和结合强度对于力学性能影响的机制还不清楚。因此,本文利用第一性原理计算研究了Al(111)/4H-SiC(0001)和Al(111)/α-Al2O3(0001)界面体系的结构、结合强度及成键特征等性质,并分析了界面产物和掺杂调控对界面结合和力学性能影响的微观机制。界面反应会直接影响复
穆勒矩阵偏振测量系统(Mueller-matrix polarimetry,MMP)是分析光学材料表面和亚表面应力的重要工具。但目前MMP基本上是台式仪器,结构复杂,操作繁琐,难以实现光学加工机床上的光学材料原位在线检测。针对这些问题,本论文研究了一种基于磁光旋转的紧凑型原位穆勒矩阵偏振测量系统和方法,采用磁光旋转的方法避免传统偏振测量系统中器件机械运动带来的误差,同时采用多态自校准方法,使该系统
与传统钛合金相比,钛基复合材料具有高强度和良好的高温力学性能等优点,但钛基复合材料还存在界面开裂和界面脱粘等问题,对其力学性能产生不利影响。并且由于实验中界面结构的复杂性,界面微观结构、界面结合和力学性能之间的关系尚不清楚。考虑到SiC和TiB是钛基复合材料中应用最广泛的增强相,本工作利用第一性原理计算系统研究基体掺杂的SiC/Ti体系和增强相掺杂TiB/Ti体系的界面结合、理论强度和弹性性能,结