论文部分内容阅读
基于漫反射板星上定标方式以非常稳定的太阳光照明BRDF已知的太阳漫反射板,形成辐亮度已知的充满遥感器视场的近似朗伯面光源,可以实现全光路、全孔径、端到端的绝对辐射定标,因其具有高精度、高频次、高效率的特点,目前已经成为星上定标主要发展方向之一,并成功应用于MODIS、MERIS等卫星载荷的在轨定标。因为漫反射板BRDF在轨运行期间会发生衰减,为保证长期星上定标精度,需要对其衰减进行监测修正。MODIS采用太阳漫反射板稳定性监测仪(SDSM)用于监测定标漫反射板BRDF衰减,同时采用衰减屏对入射光通量进行衰减实现定标时刻与对地观测时刻能量的匹配,然而因为运动机构过多,会给长期定标带来不利影响;MERIS采用一块与定标漫反射板同工、同源的参考漫反射板监测定标漫反射板的衰减,而观测不同目标时遥感器入瞳能量具有较大差异性,探测器动态响应范围较大,因此也会给定标结果带来一定误差,而且体积、重量较大;本文在吸收两种定标方式成功经验的基础上提出了 "双太阳漫反射板+太阳衰减屏"星上定标方案,采用待定标遥感器观测太阳漫反射板,使得观测角度及视场一致,提高星上定标精度。根据新的星上定标系统,本文建立了星上反射率及绝对辐射定标模型。定标时刻漫反射板BRDF和衰减屏透过率实时量值是决定定标精度的关键参数,可以通过地面测量值结合建立的BRDF衰减监测模型和具体轨道参数确定,因此发射前BRDF和透过率需要在地面实验室精确测量得到。建立了基于定标次数的太阳漫反射板退化模型。设计并制作了太阳漫反射板和太阳衰减屏,并对其性能进行了高精度测试。漫反射板BRDF测试结果表明两块太阳漫反射板BRDF具有很好的一致性和朗伯性,且不确定度优于1%,满足星上定标需求;透过率测试结果表明衰减屏在测试角度范围内透过率为13.8%,测试不确定度优于0.54%。最后分析了基于定标漫反射板的反射率定标精度,结果表明反射率定标精度优于1.9%。