一类二阶退化椭圆型方程边值问题的适定性及解的正则性

来源 :复旦大学 | 被引量 : 0次 | 上传用户:yzahnig621
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文主要目的在于研究一类二阶退化椭圆型方程边值问题的适定性及解的正则性.该类问题与几何中无穷小等距形变刚性问题的研究密切相关,其具有高阶正则性的解的存在性对研究几何问题尤为重要.而这类方程的特征形式在所研究的区域上是变号的,即在有的子区域上非负,而在其余的子区域上非正.因此,其适定性的研究也是值得深入讨论的.全文共四章,第一章为绪论.第二章在周期区域上考虑一类二阶半线性退化椭圆型方程边值问题的适定性及解的正则性,使用椭圆正则化方法和压缩映象原理来研究问题.首先考虑带有大参数λ的相应边值问题的适定性以及解的正则性.通过构造辅助边值问题,建立了各种能量不等式,并利用这些先验估计,以及Banach-Saks定理得到了H<1>弱解存在性;然后利用Fredholm-Riesz-Schauder理论和极值原理可得原来不带参数λ的相应线性问题的适定性及解的高阶正则性.第三章在一般区域上考虑一类特殊二阶退化椭圆型方程边值问题的适定性及解的正则性.该一般区域具有光滑边界,并分为内部区域和外部区域两部分,两区域之间以一条光滑封闭曲线为交界.使用椭圆正则化方法分别在每个区域上讨论Dirichlet问题,即先构造辅助问题,并建立辅助问题的能量不等式,然后由紧性推理方法,利用辅助问题的解的某种收敛性来得到原问题的弱解存在性.第四章使用Moser引理和压缩映象原理,得到一类特殊的二阶半线性退化椭圆型方程边值问题解的存在性.
其他文献
首先,该文较系统地介绍了轴向运动弦线的横向振动的研究背景,研究现状.采用了Hamilton原理建立系统运动方程,然后具体描述了该文研究的两上模型:Kelvin微分型模型和满足Boltz
该文共分两章:第一章研究一类高维正倒向随机微分方程的比较定理.第一节介绍该文需要的正倒向随机微分方程的基本结论.第二节讨论我们的主要结果,叙述了当m>1,n=1,即正向为一
该文的工作就是基于局部二次逼近原理,首先通过构造新的共线调比因子,得到了一类新的更简洁,数值稳定性更好的共线调比算法,进而我们给出了该共线调比算法的局部收敛性,全局
该文讨论和研究了关于加权最小二乘问题的几种迭代方法,分别给出这些迭代方法的具体算法,基本性质及数值例子.文章分为两个部分.第一部分介绍了GSOR(Generalized Successive
1、该文首先讨论对非高斯α-平稳分布的研究意义及有关定义、性质、重要定理等基本理论.论述了分数低阶矩和最小离差误差准则两个重要概念,最小离差误差准则类似于高斯假设下
配置法是近二、三十年发展起来的一咱数值求解方法,它是以满足纯插值约束条件的方式,寻求算子近似解的方法.配置法具有:不必计算数值积分,逼近方程容易形成,计算简便且收敛精
由于小波分析克服了傅立叶分析的不足,使得小波分析在图像处理和信号处理中得到了广泛的应用.信号处理和图像处理中通常期望小波具有如下的性质:紧支,正交,对称,正规和内插.