【摘 要】
:
随着科技的发展和社会的进步,在生产和生活中遇到的问题越来越复杂,用传统的数学方法已经很难快速解决这些问题。其中一类多目标优化问题,由于其多个目标之间往往会互相冲突,导致这类问题几乎不存在最优解。而且由于目标维数的增加,使得传统多目标优化算法的性能急剧下降,传统的方法越来越难以解决这类问题。基于网格的超多目标进化算法Gr EA引入了网格支配的概念,并利用网格设计了种群个体评估的方法,表现出优秀的搜索
论文部分内容阅读
随着科技的发展和社会的进步,在生产和生活中遇到的问题越来越复杂,用传统的数学方法已经很难快速解决这些问题。其中一类多目标优化问题,由于其多个目标之间往往会互相冲突,导致这类问题几乎不存在最优解。而且由于目标维数的增加,使得传统多目标优化算法的性能急剧下降,传统的方法越来越难以解决这类问题。基于网格的超多目标进化算法Gr EA引入了网格支配的概念,并利用网格设计了种群个体评估的方法,表现出优秀的搜索能力。然而随着目标维度的升高,依然难以应对出现的问题,选择压力还是会越来越小。首先,本文针对在超多目标优化问题中,平衡种群多样性和收敛性困难的问题,提出了基于网格的超多目标进化算法Ma OEA/Gr。算法的基本思想是优先选择优势网格,再从优势网格中选择最优个体。首先提出了优势网格筛选方法,从若干网格中,选出收敛性和多样性俱佳的网格,并以这些网格作为种群个体的选择基准。然后在这些优势网格的基础上,使用优势网格补充算法,补足优势网格的数量。最后从每个优势网格中选择到网格坐标最近的个体作为下一代种群。如果最终选择的种群大小超出要求数目,通过聚类的方法限定种群的数量,并选择每个聚类中的优势个体。本文在WFG测试问题集和Ma F测试问题集上对算法进行了实验,通过与其他5种超多目标进化算法的比较,证明了本算法能够有效平衡高维目标空间中种群的收敛性和多样性。其次对边缘计算中任务调度问题进行了研究,分析了边缘计算的网络架构和应用模型,并提出了用于解决任务调度问题的多目标优化模型。运用所提出的Ma OEA/Gr算法进行求解。最后在仿真平台上,将所提出的方法与常用的调度算法进行对比实验。结果显示,本文的算法结果在要优化的几个目标上都表现出一定的优势,证明了它在解决这一类问题上的有效性。
其他文献
随着现代医疗数字化和智能化的快速发展,生物信号的采集需求越来越大,对生物信号采集和处理水平的要求也越来越高。由于生物信号频率较低、幅度较小的特点,在生物信号采集系统中,一般采用低速高精度的模数转换器(ADC)进行采样和量化。另外,生物信号采集系统对便携性要求较高,因此对功耗和体积也有严苛的要求。低速、低功耗、高精度的模数转换器是实现生物信号采集系统最关键的单元之一,其性能对系统功能具有重要影响。S
电子设计自动化对于集成电路设计的重要性不言而喻,验证遍布设计流程的各个环节且成本占比最高。基于多FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)系统的原型验证和硬件仿真具有速度快、容量大等特点,目前被广泛应用于超大规模集成电路的逻辑验证。多FPGA系统的编译过程决定着最终性能,电路划分、系统级布线和TDM(Time Division Multiplexi
氮化镓(GaN)材料具有宽带隙、高击穿电场和耐高温等优势,在高频、高压和高温等领域具有广阔的应用前景。尤其是GaN材料还表现出优异的抗辐照特性,使GaN基高电子迁移率晶体管(HEMT)在空间应用中具有突出的应用潜力。然而,前期研究发现,在空间环境中GaN HEMT器件受到高能粒子辐照后会发生单粒子效应(SEE),严重制约了其在空间环境中的应用。因此,本文基于Silvaco TCAD工具对GaN H
随着无线通信系统向高数据传输速率,大数据量的方向不断发展,太赫兹波段因具有超宽的频带资源获得了众多学者的关注。带通滤波器是通信系统中重要的无源器件,对于太赫兹滤波器的研究具有重要意义。基于第三代半导体材料SiC的有源器件已经应用于新能源汽车,5G通信基站等领域,具有优异的功率和高频特性,这些优点使得SiC材料同样可以应用于无源器件的设计中。当前主流高频滤波器主要基于LTCC,CNC和PCB等工艺,
氮化镓(GaN)器件凭借其高电子迁移率、高二维电子气密度等优势广泛应用于雷达、通信等领域。在实际应用中,氮化镓器件会面临氢气环境,这可能对器件的电学性能产生影响。因此本文主要针对氮化镓器件的氢效应和氢处理后氮化镓HEMT器件的电应力可靠性两个方面开展现象分析和机理研究。首先开展了氮化镓器件的氢效应研究。将GaN器件置于压强0.5MPa、浓度为99.9%的氢气气氛中,并于120℃下处理168h。氢处
近年来,诸如智能家居、智能可穿戴设备等基于无线传感器网络(Wireless Sensor Networks,WSN)的各类低功耗物联网(Internet of Things,Io T)设备正在走进寻常百姓家,它们将传感、数据处理与无线通信等功能结合起来,改变了人类生活范式。迄今为止,电池供电仍旧是大量WSN节点首选的供电方式,然而,受制于电池寿命与使用环境等不利因素,有限的能量供给依然是WSN节点
近年来,航天技术作为衡量国家综合实力的重要一环,得到了越来越多的关注,人们也越来越意识到了保持航天器在宇宙空间环境中可靠性的重要性。而作为航天器中核心器件的半导体器件,全耗尽型绝缘体上硅(FDSOI)结构因其速度高、功耗低、集成密度高、亚阈值特性好等优势受到了业界的认可与关注。但在应用的过程中,由于辐照环境里的高能粒子轰击而造成器件发生软错误的可靠性问题是不容忽视的。因此本论文以小尺寸器件22 n
绝缘体上硅(Silicon On Insulator,SOI)技术是上个世纪九十年代的研究重点,相较于体硅器件来说,SOI器件具有速度高,功耗低和抗闩锁等优点,也是被业界公认在纳米技术时代取代现有单晶硅材料的解决方案之一,被应用于航空航天等多个领域中。但随着器件的特征尺寸不断减小,器件的工作电压却没有等比例缩小,沟道横向电场逐渐增大,使得热载流子效应引起的器件退化越来越严重,对于SOI器件来说,由
作为第三代化合物半导体材料,4H-SiC具有三倍于Si的禁带宽度,十倍于Si的击穿电场强度,三倍于Si的热导率和二倍于Si的饱和漂移速度。优异的材料特性使4H-SiC基功率器件相比于传统的Si基功率器件具有高击穿电压,低导通电阻,高电流密度和高频工作等优异特性,在高压高功率密度应用系统具有广阔的前景。近年来,新能源汽车的性能提升对SiC基MOSFET功率器件提出了新的要求,如何实现车规级大电流,高