论文部分内容阅读
相干光通信的发展,是过去二十年光纤通信系统容量增长的重要因素。目前,相干光通信是长距离传输的主流技术。如今互联网流量爆炸性增长,数据中心光网络等短距离传输系统对容量的要求越来越高,使得相干技术在短距离系统中也逐渐受到重视。在短距离系统中,灵活性和低成本至关重要,其中光性能监测是提升灵活性的重要功能,而ADC和DSP是系统成本的主要组成部分。目前的光性能监测技术大多采用复杂的深度神经网络,其复杂度高,难以在硬件上部署。高精度的ADC和复杂的数字域均衡算法成本高昂。为了解决这些问题,本文针对短距离相干光接收机应用,从光信号处理、光性能监测和自适应均衡三个方面进行了研究,论文主要研究内容和创新成果如下:1.研究了一种光电混合的二值化相干光接收机,仿真分析了传输距离10 km以内的50-Gb/s单偏振QPSK系统和100-Gb/s的双偏振QPSK系统,该接收机通过特殊设计的光信号处理模块对光信号进行预处理,有望降低ADC的精度,降低系统成本。2.基于二值化神经网络仿真并实验验证了一种高效智能的光性能监测模块。在传输速率为12.5-GBaud/s,传输距离为5 km的实验系统中,该光性能监测模块达到了 100%准确率的调制格式识别和超过95%准确率的光信噪比估计。相比已公开报导的方案,其内存开销降低3倍,运算速度提升2倍以上。该光性能监测模块有望为智能弹性光网络提供实时且精确的信道信息,辅助网络层进行资源调度和管理。3.基于Stokes空间偏振对齐技术,仿真并实验验证了一种低复杂度的自适应均衡器。在传输距离为5 km,速率为12.5-GBaud/s的16/64-QAM系统中,其误码率性能和传统算法相似,计算成本降低约45%,且其解偏振性能稳定,能容忍至少20 km的色散影响,部署场景更加灵活,在下一代短距离系统中具有重要应用潜力。