论文部分内容阅读
生存分析是根据试验或调查得来的数据对生物或人的生存时间进行的分析和推断,它是用来研究被随访对象的生存时间和结局与众多影响因素之间关系及其程度大小的方法,故也称生存率分析或存活率分析.简言之,生存分析是研究生存现象和响应时间数据以及统计规律的工具,它在生物学,医学和经济学等方面有广泛的应用.而贝叶斯方法是生存分析中最常用的方法,我们将贝叶斯方法和影响点诊断方法应用于生存分析中称之为贝叶斯影响分析.一个完全的贝叶斯影响分析包括数据分析、概率模型的构造、先验信息和效应函数的假设、寻找影响点以及最后的结果分析. 本文主要讨论的是生存分析中最常用的模型—Cox比例风险模型.本文做的工作主要是在库克斯生存模型的基础上,添加随机效应构造混合效应模型并对其进行贝叶斯影响分析.基于库尔贝克-莱布勒偏差(K-L偏差),我们不仅推出了既适合联合后验分布又适合于边际后验分布的K-L偏差的简便表达式,而且还研究了它与条件预测坐标(CPO)之间的关系,从而提高了计算的效率和准确度.在做模型的贝叶斯影响分析过程中,我们结合本文的数据,先进行数据分析,当数据满足比例风险假设(PH假设)的情况下,构造Cox生存模型,再结合样本信息和先验信息通过利用蒙特卡洛抽样中的Gibbs抽样方法估计模型中的未知参数.晟后根据本文推出的K-L偏差表达式和后验信息诊断出影响点并做出分析.