编组站驼峰车辆溜放过程动态分析研究

来源 :兰州交通大学 | 被引量 : 0次 | 上传用户:gumozaoshi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
编组站,铁路货运列车的生产工厂,在铁路运输生产及货物送达速度方面,发挥着至关重要的作用。因此编组站的作业效率及作业安全水平,关乎铁路运输作业的安全性及铁路货物运输的效率。驼峰作为编组站作业的核心,驼峰作业水平的安全性和高效性,是衡量编组站作业效率的重要指标。在驼峰作业中,溜放车辆的溜放速度控制水平,关系着驼峰溜放车辆的解体速度和溜放车辆安全性。车辆从驼峰溜放速度控制由众多因素影响,文章分析了驼峰溜放车辆的自动化控制系统、速度控制设备以及调速系统,得出了要保证车辆的安全溜放,需要不同系统之间的协调配合。而前人在对驼峰溜放速度进行研究时,只是做了单个方面的分析,忽视了驼峰溜放车辆的速度控制过程是一个整体性控制系统,为此文章在研究驼峰溜放车辆的速度控制时,从如下几个方面进行分析研究:在分析溜放车辆的受力时,文章借鉴了前人对溜放车辆的基本阻力、风阻力、道岔阻力和曲线阻力的计算方式,对这些力进行加成作为溜放车辆所受的外力进行分析。但是前人在对溜放的大车组进行力学分析时,把车辆当作单个的溜放个体,忽视了车组之间的互相作用力及车辆的受力质点处于不同的平面,本文把溜放车辆看作刚体,对其溜放时所受的合力进行分析,确定了其受力质点的位置及所受合力的大小。文章对溜放车辆的速度进行分析时,考虑到溜放车辆所受的空气阻力和风阻力是不确定因素,首先建立溜放车辆的匀速直线运动模型,确定车辆的溜放速度与所受阻力之间的关系,然后把溜放车辆所受的空气阻力和风阻力当作均匀变化的力和非均匀变化力,分别进行讨论分析,得出了车辆的匀变速运动速度模型和非匀变速运动模型。将车辆在溜放时所受的力代入速度模型,加入溜放车辆的间隔调速原理与目的调速原理,得出溜放车辆的匀变速与非匀变速的间隔调速模型和目的调速模型。运用得出的速度控制模型,运用兰州北站的相关资料,对驼峰溜放的车辆进行受力分析,得出车辆在溜放过程所受的速度-距离曲线图,根据受力图对受理过程进行分析,分析溜放车辆在不同位置时的溜放速度,确定车辆在不同部位的减速器通过时,是否需要对车辆施加制动力,保证车辆能够实现安全准确的与股道停留车辆进行连挂。对驼峰溜放车辆的速度控制原理进行力学速度模型分析,对车辆的溜放过程受力进行计算机模拟,不仅仅能够保证车辆在驼峰的快速安全连挂;还能够对新建驼峰进行合理性检验,确定驼峰溜放坡的坡度及驼峰能高设计是否合理;对车站员工的日常作业进行培训,帮助员工能够合理的对溜放车辆施加制动力,保证作业人员的作业效率;对运营组织专业的学生进行教学培训,帮助学生掌握现场作业的相关原理。即对驼峰溜放车辆的溜放速度控制原理进行分析模拟,有着重要的实践意义和科研价值,有利于驼峰溜放作业的进一步发展。
其他文献
数字全息技术是计算机技术和传统光学全息相结合的产物,与传统光学全息不同,数字全息图的记录和再现采用数字化过程,简化传统光学全息记录和再现,数字全息技术能够较为方便地
本文主要阐述在大洼油田措施基础日渐薄弱,稳产难度越来越大的阶段,如何转变思路寻找接替性措施,成为油田稳产上产的关键.运用四类方法,多角度制定合理措施方案,并可运用至其
大学体育教育在全民终生体育教育中担当着至关重要的桥梁角色,但目前我们的大学体育教育严重忽视了大学生正确体育观的建立以及对终生体育概念的理解,大学体育仅仅是中小学体育
在开展精馏工作时,必须保证精馏塔这一装置质量效果和综合运行模式.同时强化精馏塔精馏效果影响因素处理力度,确保精馏塔在精馏工作中作用效果得以彰显.本文将针对精馏塔展开
在目前的三维人脸识别研究中,人脸特征点自动探测技术还不发达,手工标定特征点工作量大,费时且繁琐。为此,本文提出了一种将二维局部角点与三维局部形状指数相结合的方法,自动、准
随着经济和社会的发展,我国中小城市面临着交通拥堵、环境污染、能源消耗、噪声污染等诸多交通问题。旧的以车为中心的交通发展模式已经不能满足居民的出行需求,以可持续发展理
由于有机聚合物太阳能电池的转换效率较低,可以通过对不同活性材料的设计和选择方法的改进,使有机聚合物太阳能电池的性能上有所突破,缓解亟待解决的能源危机。氧化石墨烯材料是通过sp2杂化碳原子成键,具有蜂窝状的二维平面结构。当氧化石墨烯与高分子材料复合的时候,能够形成相当大的界面,提高激子的扩散速率和载流子的迁移率,并且不会造成电荷传输路径破坏而产生的二次聚集。因此,石墨烯是有机聚合物太阳能电池的受体材
今年元宵节,北京下起了一场大雪,出现了雪打灯笼的情景,实在是太美妙了.那洁白的雪粒打在灯笼纸上,发出的沙沙声响,静静谛听,犹如是一种与众不同的天籁之音.
光谱仪是一类应用广泛的光学仪器,常用于对物质的结构和成分进行测量和分析。传统的光谱仪基于Windows平台的PC机,实现快速、直观、实时在线的光谱分析和谱图显示,可是在室外条件下使用,非常不便。本文基于光谱仪微型化、便携式、智能化设计的需求,克服基于Windows平台的PC机处理系统在户外使用的不便,应用微处理器和Android设备相结合的方式,实现便携式光谱仪的光谱数据采集与处理,满足光谱仪在户
摘要:随着高速铁路的迅猛发展,高速列车行车安全性保障也得到广泛关注。由于车速的提高、线路周边环境的变化、轨道表面的不确定性以及一些轻度地质灾害等因素存在,高速列车的