【摘 要】
:
高熵合金作为一种颠覆传统设计理念的超合金,由于性能卓越,在工业应用领域有广阔的前景。因此,自高熵合金诞生的那一刻开始,就吸引了广大科研工作者巨大的关注和广泛的研究,成为材料领域的研究热点。虽然高熵合金在短短的十几年间发展十分迅速并且取得了开创性的成果,甚至相关研究得到了各国政府部门的鼎力支持,但是高熵合金的研究仍然处在初级阶段,人们对于高熵合金的合金化机理、变形机制、扩散机制和强化机制等内容,以及
论文部分内容阅读
高熵合金作为一种颠覆传统设计理念的超合金,由于性能卓越,在工业应用领域有广阔的前景。因此,自高熵合金诞生的那一刻开始,就吸引了广大科研工作者巨大的关注和广泛的研究,成为材料领域的研究热点。虽然高熵合金在短短的十几年间发展十分迅速并且取得了开创性的成果,甚至相关研究得到了各国政府部门的鼎力支持,但是高熵合金的研究仍然处在初级阶段,人们对于高熵合金的合金化机理、变形机制、扩散机制和强化机制等内容,以及其中涉及到的基础科学问题认识不够。本论文以CoCrFeNi系高熵合金为基础,分别添加不同的Ti和B元素,系统地研究Ti元素含量对CoCrFeNiTixB0.05(x=0.2,0.4,0.6,0.8,1.0)高熵合金和B元素含量对CoCrFeNiTi0.6Bx(x=0.025,0.05,0.075,0.1,0.125,0.15)高熵合金的微观组织以及力学性能的影响,同时研究不同温度热处理(450℃,650℃,850℃)对其组织和性能的影响。实验选用纯度不低于99%的Co、Cr、Fe、Ni、Ti金属粉末及B粉,通过粉末冶金法制备原材料,分别在450℃,650℃,850℃进行退火处理后,运用OM,XRD,SEM,EDS和维氏硬度计等手段对微观组织和力学性能进行表征测试和分析。研究发现,CoCrFeNiTixBy高熵合金主要由FCC相构成,还有少量BCC相和硼化物;烧结态和退火态的CoCrFeNiTixBy高熵合金的微观组织相似,由深灰色的枝晶间和浅灰色的树枝晶组织组成;退火温度升高,原子被激活,继续扩散,改变分子间相,硬度逐渐升高;随着Ti含量的增多,枝晶间富Ti相增多,BCC结构相增多,使合金硬度升高;随着B含量的增多,合金中出现硬质硼化物,有利于提高合金硬度;在烧结态时,CoCrFeNiTi0.6Bx(当x=0.15时)达到硬度最大值251.67HV,CoCrFeNi B0.05Tix(当x=1.0时)达到硬度最大值302.32HV;在850℃退火时,CoCrFeNiTi0.6Bx(当x=0.15时)达到硬度最大值508.94HV,CoCrFeNi B0.05Tix(当x=1.0时)达到硬度最大值533.32HV。
其他文献
随着社会的发展和进步,能源消耗和环境污染等问题逐渐凸显并带来了前所未有的挑战。作为组合的高级氧化技术,半导体光催化与过硫酸盐氧化的协同已成为一种新兴的有机污染废水处理方法。碘氧化铋(BiOI)具有独特的层状结构和适宜的禁带宽度,是近年来备受关注的光催化材料。但是,BiOI的光生载流子易于复合,从而降低其光催化效率。为了弥补这个缺陷,本研究将石墨相氮化碳(g-C3N4)和磁性四氧化三铁(Fe3O4)
随着不断增长的全球能源需求和日益减少的化石燃料以及全球变暖所导致得温度升高问题,要求人类不断努力开发高效且具有成本效益的可再生能源替代品。以半导体纳米材料为光阳极的光电化学光伏电池备受关注,光电化学光伏电池将光能转化为电能,对于能源紧缺和环境污染等问题是一种可行的解决方式。CdS敏化ZnO因同时包含量子点和宽禁带半导体的优点而备受关注,并已应用于光电化学光伏电池的光阳极材料制备中。然而,在ZnO纳
聚乙烯(Polyethene,PE)和乙烯-醋酸乙烯酯共聚物(Ethylene-vinyl acetate copolymer,EVA)具有优异的力学性能和绝缘性能,是电线电缆领域重要的绝缘护套材料之一。为满足阻燃和环保需求,以氢氧化镁(Magnesium hydroxide,MH)为阻燃剂的无卤阻燃PE/EVA材料是安全环保的阻燃绝缘护套材料代表,但由于MH的阻燃效率低而需要较高添加量,导致阻燃
5182作为变形Al-Mg合金,具有诸多优良性能,此合金属于不可热处理型合金,合金化与加工变形是提高力学性能的有效手段。本文在5182合金基础上,分别添加不同量的Sc、Zr元素及复合添加(Sc+Zr)元素,制备出合金铸锭若干。对复合添加Sc+Zr元素的合金铸锭进行均匀化热处理工艺优化,并进行热挤压试验;通过光学金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)对铸态
在国家推动基层治理现代化新时期,乡村治理因乡镇政府“越位”、市场主体“抢位”和村庄社会“缺位”,陷入“行政有效、治理无效”、“高行政资源投入、低社会福利产出”等困境。创新乡村治理理念,在激活村社自主自治能力基础上推动形成“共建共治共享”治理格局,是乡村治理的迫切需求。治理共同体超越西方治理理论和既有乡村治理实践立足的“国家-社会”二元对立立场,在“国家-社会”融合视角下,创新治理机制推动国家权力与
本研究采用提拉法生长出一系列掺杂Yb3+(1mol%)离子、Nd3+(1mol%)离子、Sc3+离子(0、0.5、1、1.5mol%)的内部与表面无裂纹,透明度高、光学均匀性良好的Sc:Yb:Nd:Li Nb O3晶体,并经过极化、切割、研磨、抛光等后处理方法得到晶片样品,标记为Sc Yb Nd-0,Sc Yb Nd-1,Sc Yb Nd-2和Sc Yb Nd-3进行各个性能测试。通过电感耦合等离
金属-塑料异质材料的使用普遍性取决于界面处的连接强度。通过金属表面处理可以有效提高异质材料界面强度。本文借鉴于贝类生物的贝壳-闭壳肌连接结构,采用solidworks绘图软件设计出铝合金基体及其不同的表面结构,采用选择性激光熔融技术制备铝合金实体,结合热压方法实现了铝合金-聚醚醚酮异质材料的连接。对铝合金表面结构的抗压性能、热压参数、连接界面的紧密程度、结合强度等进行研究,同时探讨了结合机理和断裂
环氧树脂(epoxy resin,EP)作为具有优良性能的热固性树脂,广泛用于电子封装及印刷电路管领域。电子元器件朝着微小化、集成化和高频化方向发展,对环氧树脂的散热性能提出了更高的要求,利用无机纳米材料改性环氧树脂一直是研究热点。氮化硼(boron nitride,BN)具有多种优良性能,如高导热性、低热膨胀系数、高电绝缘性、良好的尺寸稳定性及化学稳定性等。通过引入表面改性BN可以提高与EP的相
Cu基纳米材料因其丰富度高、成本低以及独特的化物属性被应用于传感领域。然而,大部分非酶电化学传感器,检测范围较窄,成本较高,在灵敏度和选择性有待提高。通过改变Cu基纳米材料的形貌以及形成异质结构是改善其传感特性的有效方法。首先,本文提供一种高纯度的六边形Cu纳米片(Cu NSs)的制备方法,通过控制Cu纳米晶的熟化时间和柠檬酸铜的还原速率,实现Cu NSs的2维结构的调控。由于2维Cu纳米材料独特
纳米晶金属材料相较于传统的粗晶金属材料,在热学、力学和电学等方面表现出许多独特的性质,但其在室温条件下塑性较差,成形极限低,成形困难且容易产生加工缺陷。尽管在高温下表现出超塑性使材料能获得较大的变形,但随着温度的升高,材料发生晶粒长大及表面氧化,使其失去原有的优异性能,这极大地限制了材料的应用。为解决上述问题,本文将脉冲电流引入到纳米晶金属材料的成形工艺中,在较低温度下对电沉积制备的纳米晶Ni箔进