论文部分内容阅读
该文为了探索新型二阶非线性光学玻璃材料,采用石英管熔融法制作了Ge-As-S和Ge-Ga-S-Se两个体系的块体硫系玻璃,利用DSC-TG和XRD进行了成玻分析,分析了其紫外-可见光透过率,用Raman谱分析了结构.采用电场/温度场方法进行了极化处理,利用Maker条纹法进行了二阶非线性检测,分析和探讨了硫系玻璃的极化机理,从整体上探索和分析极化工艺及玻璃成分与二阶非线性效应的关系.利用磁控溅射法制备了两个组分的Ge-Ga-S-Se玻璃薄膜.用SEM分析了薄膜的断面形态,在椭偏仪上测得其折射率,并对薄膜进行了Raman光谱、XPS分析,在没有极化的条件下进行了二阶非线性Maker条纹检测.研究表明:Ge-As-S和Ge-Ga-S-Se体系玻璃的成玻性能非常好,能够制作较大块玻璃,在Ge-As-S体系中短波吸收边随As的增加而向长波方向移动,Ge-S和As-S为玻璃网络形成体.Ge-Ga-S-Se体系中短波吸收边随Se的增加而向长波方向移动,Ge-S,Ga-S,Ge-Se,Ga-Se为玻璃网络形成体.经过极化后两者都产生了明显的Maker条纹.在Ge-As-S体系中随As的增加Maker条纹强度变化不明显.在Ge-Ga-S-Se体系中随着Se含量的增加,Maker条纹强度明显增加.这说明Se的加入有利于二阶非线性效应的增强.用磁控溅射方法以此靶材溅射得到了1-10μm厚的、均匀的Ge-Ga-S-Se硫系玻璃薄膜,其大的折射率表明其用于集成光学具有明显的优势.利用S和Se溅射速率的不同,通过调制溅射条件可以在同一靶材上制得不同的组分、从而得到不同折射率的玻璃薄膜,可以很方便地用于光波导技术.该薄膜不用极化处理,就产生了显著的Maker条纹.结果表明薄膜的制备方法影响了薄膜的微观结构,磁控溅射过程中,电场和磁场影响了靶材原子的沉积,使玻璃薄膜中的电偶极子在一定程度上得到了定向排布,使薄膜呈现出显著的二阶非线性效应.