论文部分内容阅读
近年来,利用共振瑞利散射(RRS)(或者共振光散射(RLS))技术发展和建立了一系列测定蛋白质的新方法,多数是基于染料与蛋白质反应形成结合产物时引起RRS的显著增强,并认为是染料生色团在生物大分子上的聚集作用是引起散射增强的主要原因。虽然金属离子及其无机配合物与蛋白质的反应也是蛋白质与小分子相互作用的重要研究内容,且对于了解蛋白质的生物化学性质也有重要作用,但是由于它们不具备生色团,通常认为用吸收光谱和共振瑞利散射光谱法研究有一定困难,迄今报道不多。我们的研究发现,金属离子Hg(Ⅱ)、Pd(Ⅱ)、Cd(Ⅱ)与过量的I-形成[HgI4]2-、[PdI4]2-、[CdI4]2-配阴离子时,则能与蛋白质反应形成结合产物而引起共振瑞利散射(RRS)显著增强,并且出现新的散射光谱,这一工作可为研究Hg(Ⅱ)、Pd(Ⅱ)、Cd(Ⅱ)等金属离子及其卤合阴离子与蛋白质的相互作用提供某些新信息,由于[HgI4]2-、[PdI4]2-、[CdI4]2-配阴离子并不含生色团,这就说明了生色团在生物大分子上的聚集作用不是RRS散射增强的必要条件。研究表明,[HgI4]2-、[PdI4]2-、[CdI4]2-与蛋白质的结合产物的散射强度(△I)在一定范围内与蛋白质浓度成正比,据此可用上述体系定量测定蛋白质。蛋白质本身具有内源荧光,这是由于蛋白质中存在酪氨酸和色氨酸残基,能吸收紫外光而产生荧光。我们研究表明,在酸性介质中,汞(Ⅱ)和碘化物形成的配阴离子[HgI4]2-与过量的碘化物和痕量铬(Ⅵ)发生反应形成的I3-配阴离子能与带正电荷的蛋白质借助于静电引力和疏水作用力反应形成结合产物,此时将导致蛋白质内源荧光的荧光猝灭,其猝灭程度在一定范围内与重金属离子浓度成正比,据此可建立荧光猝灭法测定汞(Ⅱ)、铬(Ⅵ)的新方法。本文主要研究内容如下:1.[HgI4]2--蛋白质体系共振瑞利散射和共振非线性散射光谱及其分析应用研究在0.0035-0.0045 mol/L硫酸介质中,牛血清白蛋白(BSA)、人血清白蛋白(HSA)、卵白蛋白(OVA)和血红蛋白(HGB)等蛋白质以带正电荷的阳离子存在。它们能借助于静电引力和疏水作用力与配阴离子[HgI4]2-反应形成结合产物,此时将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)显著增强,并且出现新的散射光谱。其最大RRS、SOS和FDS波长分别位于390、760和390 nm附近。在一定范围内,三种散射增强(△IRRS、△ISOS和△IFDS与蛋白质浓度成正比,方法具有高灵敏度,三种方法对于不同蛋白质的检出限分别在5.7-15.9ng/mL(RRS)、8.2-15.4 ng/mL(SOS)和11.2-22.1 ng/mL(FDS)之间,均可用于痕量蛋白质的测定。本文研究了[HgI4]2-与蛋白质相互作用对RRS、SOS和FDS光谱特征和强度的影响,考察了适宜的反应条件,并以RRS为例考察了共存物质的影响,表明方法有良好的选择性。据此,利用[HgI4]2--与蛋白质的相互作用发展了一种用共振光散射技术、灵敏度高、简便、快速测定蛋白质的新方法。本方法可用于血清和人尿中总蛋白质的测定。2.[PdI4]2--蛋白质体系共振瑞利散射和共振非线性散射光谱及其分析应用研究本文研究了[PdI4]2-配阴离子与蛋白质的结合反应。在0.00175-0.00225 mol/L硫酸介质中,牛血清白蛋白(BSA)、人血清白蛋白(HSA)、卵白蛋白(OVA)、血红蛋白(HGB)、溶菌酶(Lys)、γ-球蛋白(γ-G)、a-糜蛋白酶(a-Chy)、木瓜蛋白酶(Gap)等蛋白质以带正电荷的阳离子存在。它们能借助于静电引力和疏水作用力与配阴离子[PdI4]2-反应形成结合产物,此时将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)显著增强,并且出现新的散射光谱。其最大RRS、SOS和FDS波长分别位于367 nm、720 nm和370 nm附近。在一定范围内,三种散射增强(△IRRS、△ISOS和△IFDS与蛋白质浓度成正比,方法具有高灵敏度,三种方法对于不同蛋白质的检出限分别在2.4-11.8 ng/mL(RRS)、9.5-47.9 ng/mL(SOS)和4.6-18.5 ng/mL(FDS)之间,均可用于痕量蛋白质的测定。本文研究了[PdI4]2-与蛋白质相互作用对RRS、SOS和FDS光谱特征和强度的影响,考察了适宜的反应条件,并以RRS为例考察了共存物质的影响,表明方法有良好的选择性。据此,利用[PdI4]2-与蛋白质的相互作用发展了一种用共振光散射技术、灵敏度高、简便、快速测定蛋白质的新方法。本方法可用于溶菌酶片剂中的Lys的测定,亦可用于人血清和人尿中总蛋白质的测定。3.[CdI4]2--蛋白质体系共振瑞利散射光谱及其分析应用研究在0.0035-0.0045 mol/L硫酸介质中,牛血清白蛋白(BSA)、人血清白蛋白(HSA)等蛋白质以带正电荷的阳离子存在。它们能借助于静电引力和疏水作用力与配阴离子[CdI4]2-反应形成结合产物,此时将引起共振瑞利散射(RRS)显著增强,并且出现新的散射光谱。其最大RRS波长位于317 nm附近。在一定范围内,散射增强(△IRRS)与蛋白质浓度成正比,方法具有高灵敏度,BSA、HSA的检出限分别为4.9ng/mL、11.3ng/mL,线性范围分别为0.016-2.5μg/mL、0.038-3.0μg/mL,均可用于痕量蛋白质的测定。本文研究了[CdI4]2-与蛋白质相互作用对RRS光谱特征和强度的影响,考察了适宜的反应条件,并以BSA为例考察了共存物质的影响,表明方法有良好的选择性。据此,利用[CdI4]2-与蛋白质的相互作用发展了一种用共振光散射技术、灵敏度高、简便、快速测定蛋白质的新方法。本方法可用于血清和人尿中总蛋白质的测定。4.[HgI4]2-配阴离子对蛋白质的荧光猝灭作用及其分析应用研究在0.0045-0.0055 mol/L硫酸介质中,牛血清白蛋白(BSA)、人血清白蛋白(HSA)等蛋白质以带正电荷的阳离子存在。它们能借助于静电引力和疏水作用力与汞(Ⅱ)和碘化物形成的配阴离子[HgI4]2-反应形成结合产物,此时将导致牛血清白蛋白(BSA)、人血清白蛋白(HSA)等蛋白质荧光猝灭。牛血清白蛋白(BSA)、人血清白蛋白(HSA)的最大猝灭波长分别位于329 nm和344 nm。在一定范围内其荧光猝灭程度与汞(Ⅱ)的浓度成正比,线性范围分别为0.023-1.2μg/mL、0.027-1.2μg/mL,相关系数分别是0.9998、0.9998,检出限分别为6.8 ng/mL、8.2 ng/mL。本文研究了[HgI4]2-与蛋白质相互作用对荧光光谱特征和强度的影响,考察了适宜的反应条件,并以BSA为例考察了共存物质的影响,表明方法有良好的选择性。据此提出了一种新的利用蛋白质荧光猝灭反应测定痕量汞(Ⅱ)的荧光分析法。该法灵敏度高,选择性较好,操作简便,可直接用于水体中痕量汞(Ⅱ)的测定,得到满意的结果。5.铬(Ⅵ)-碘化物体系对牛血清蛋白质的荧光猝灭作用及其分析应用研究在0.0045-0.0055 mol/L硫酸介质中,过量的碘化物和痕量铬(Ⅵ)发生反应,铬(Ⅵ)氧化I-离子产生I3-配阴离子,而I3-又能进一步与带正电荷的牛血清白蛋白(BSA)借助于静电引力和疏水作用力形成结合产物,此时将导致牛血清白蛋白(BSA)荧光猝灭。牛血清白蛋白(BSA)的最大猝灭波长分别位于329 nm。在一定范围内其荧光猝灭程度与铬(Ⅵ)的浓度成正比,线性范围为0.1-5.0μg/mL,相关系数为0.9997,检出限为29.8 ng/mL。本文研究了I3-与蛋白质相互作用对荧光光谱特征和强度的影响,考察了适宜的反应条件,考察了共存物质的影响,表明方法有良好的选择性。据此提出了一种新的利用蛋白质荧光猝灭反应间接测定痕量铬(Ⅳ)的荧光分析法,该法灵敏度高,选择性较好,操作简便,可直接用于水体中痕量铬(Ⅵ)的测定,得到满意的结果。