论文部分内容阅读
钢渣是炼钢过程中产生的工业废渣,其每年产生量巨大,但利用率很低,基本处于废弃和堆积状态,造成了环境污染、土地占用和资源浪费。由于钢渣的化学和矿物组成与硅酸盐水泥熟料相似,故将其用于水泥混凝土行业中的潜力很大。然而,钢渣易磨性差、水化活性低和体积不稳定是其三个重要的缺点或不足,很大程度上限制了钢渣在水泥混凝土行业的推广应用。此外,与研究和应用均很成熟的矿渣相比,有关钢渣的系统性理论研究较少,也是造成钢渣利用率低的重要原因。目前,我国排放的钢渣主要为转炉钢渣,近些年随着钢渣处理技术的提升(尤其近些年广泛采用的热焖处理工艺),使得引起钢渣体积不稳定的因素(游离氧化钙和游离氧化镁)得到较大程度的控制和改善,且热焖处理后的钢渣还具有粒度小、易磨等优点,这为钢渣的后续加工及用于水泥混凝土行业创造了良好的条件。为此,本文以转炉热焖钢渣为研究对象,从钢渣微粉的制备、自身胶凝性及其在水泥基材料中的应用性能等方面入手,对钢渣的粉磨性能、水化硬化特征及其复合胶凝材料的组成、结构与性能进行了较深入地系统研究。从化学成分、铁矿相、矿物组成、显微形貌、硬度等方面研究了转炉热焖钢渣的矿物特征,结果发现:热焖钢渣的矿物相包括硅酸盐相、RO相、铁钙相、镁蔷薇辉石与钙铁榴石相及少量金属铁相等。钢渣矿物相的显微形貌多种多样,具体为:①黑色的六方板状、树叶状和不规则形状是以O、Si、Ca元素组成的硅酸盐矿物相;②黑色圆形状是以O、Mg、Si、Ca、Fe元素组成的硅酸盐相、镁蔷薇辉石和钙铁榴石的混合相;③填充在矿物之间的不规则形状的灰色矿物是以O、Ca、Fe元素组成的铁钙相或铁酸钙相;④连续分布的浅灰色或近白色不规则状物相是以O、Mg、Ca、Mn、Fe元素组成的RO相;⑤镶嵌在其它矿物之间的白色或光亮色圆粒状矿物主要是Fe元素组成的金属铁相。从钢渣粉的细度、比表面积、休止角及颗粒分布等随粉磨时间的变化规律研究了钢渣的粉磨性能,结果发现:钢渣在粉磨过程中的比表面积与粉磨时间的对数成线性关系,特征粒径与粉磨时间的二次对数成线性关系,并伴随着筛余量先降后升(颗粒团聚)、堆积密度减小和机械力化学效应等特征。钢渣在粉磨前期中的难磨相为铁钙相、RO相和金属铁相,而在粉磨后期中的难磨相主要为金属铁相。研究了多种有机物对钢渣的助磨效果和作用规律后发现,有机物对钢渣的作用效果与其掺量、功能基团数量、类型、碳链长度和分子构型等因素有关。具体为:(a)有机物的掺量越大,其对钢渣的总体助磨效果一般越强,并非单分子层理论掺量是最佳的掺量,有机物在双分子层或多分子层理论掺量时,其效果也会缓慢增长,只是带来较高成本,在实际应用中很少采用;(b)有机物功能基团数量对其助磨性能的影响基本遵循如下规律:当羟基数≤3时,含有相同功能基团的同系列有机物的助磨效果一般随功能基团数量的增加而逐渐增强;而对于羟基>3的有机物而言,功能基团数量增多,助磨作用逐渐减弱;(c)不同类型功能基团之间的助磨效果比较为:羟胺基>羟基/羟醚基>羟醛基;(d)不同系列有机物的助磨效果达到最佳时,各自基本对应着一个最佳碳链长度,如一元醇、二元醇的最佳碳链长度就为3;(e)具有异构的空间立体结构有利于提高有机物的助磨性能,如异丙醇胺类有机物的助磨效果优于含有相同种类和数量官能团的乙醇胺类有机物;(f)不同系列有机物的助磨效果比较为:醇胺有机物>二元醇/三元醇>一元醇>多元羟基有机物,前两类有机物适宜作钢渣助磨剂,而后两类不适宜作钢渣助磨剂;(g)粉磨时间对有机物助磨效果的影响与其掺量有关,一定掺量的某种钢渣助磨剂达到其最佳助磨效果时有一个相应的最佳粉磨时间。从水化热、水化产物、反应程度、胶凝强度、浆体结构和水化动力学方程等方面研究了钢渣粉的水化硬化特征。水化热的研究发现:钢渣也具有与水泥相似的五个水化阶段,但其水化前期(诱导前期+诱导期)的时间较长,第二放热峰值很低,水化放热速率和放热总量均远低于水泥。对钢渣水化产物的研究发现:钢渣+石膏的水化产物为无定形c-s-h凝胶、棒状钙矾石和少量六方板状ca(oh)2组成的疏松结构;纯钢渣浆体的水化产物中基本无钙矾石。对反应程度和强度的研究发现:钢渣粉浆体的非蒸发水含量和ca(oh)2含量均与养护龄期成幂指数关系,钢渣粉浆体的硬化强度与养护龄期成对数关系。对钢渣水化动力学的研究发现:钢渣粉的水化深度与水化时间的关系在水化初期、中期和后期分别符合线性关系、幂指数关系和对数关系。粒径大于4.39μm的钢渣颗粒无法在360d内完全水化,在养护360d时,钢渣的水化初期、中期和后期对其水化程度的贡献率分别为37.59%、33.61%和28.80%通过对钢渣-矿渣、钢渣-粉煤灰、钢渣-石英、钢渣-硅灰四种辅助性胶凝材料复合微粉性能的研究发现:钢渣-矿渣复合微粉具有“1+1>2”的复合超叠加效应,钢渣与矿渣能相互促进其水化反应,提高其水化反应程度。钢/矿比为2:3和1:1分别为钢渣-矿渣复合微粉浆体的早期和后期水化硬化性能的最佳配比。从钢渣粉的掺量、粒径分布、作用贡献等角度出发,研究了钢渣粉对钢渣复合硅酸盐水泥性能的影响,结果发现:(a)钢渣粉的掺入使得复合硅酸盐水泥的水化诱导期延长,水化程度和强度降低,孔结构变差;掺量越高,影响越大;且复合硅酸盐水泥强度与钢渣粉掺量符合多项式函数关系。(b)粒径小于32μm的钢渣粉与复合硅酸盐水泥3d、7d、28d抗折强度和7d、28d抗压强度成正关联,而与3d抗压强度呈负关联;钢渣粉16-24μm粒径是与基准水泥匹配的最佳粒径区间。(c)钢渣粉对复合水泥的填充效应与其粒径有关,粒径越小,其物理和化学填充作用均越强。(d)钢渣粉对复合水泥的化学作用和水化程度的贡献率随其掺量的增加而增强,且钢渣粉粒径越小,其化学作用越强,反之,作用越弱。(e)钢渣粉对复合水泥强度的贡献率在3d龄期时为负值,在28d龄期时为正值。通过对钢渣-硫铝酸盐水泥(CS—A-SS)、钢渣-铝酸盐水泥(CA-SS)复合胶凝材料的组成与性能的研究发现:钢渣粉掺量较低时,CS—A-SS和CA-SS的各龄期强度和水化程度下降较小,反之,下降显著。钢渣粉使CS—A-SS浆体的孔隙率增大,孔分布变差。而较小掺量的钢渣粉会优化CA-SS浆体的孔分布(提高浆体中<20nm的无害孔含量,并降低20-50nm的有害孔含量),但整体上使CA-SS浆体的孔隙率仍增大。从少量水泥对钢渣水化硬化性能的影响角度研究,结果发现:少量(20%)硅酸盐水泥、硫铝酸盐水泥和铝酸盐水泥均能显著提高钢渣的早期胶凝性能,作用大小为:铝酸盐水泥>硫铝酸盐水泥>硅酸盐水泥;但硫铝酸盐水泥和铝酸盐水泥对钢渣后期胶凝性能的提高程度较小,而硅酸盐水泥的后期效果显著,作用大小为:硅酸盐水泥>硫铝酸盐水泥>铝酸盐水泥。从超细粉磨、化学激发剂和热养护对钢渣的活性激发及其复合胶凝材料性能的影响研究发现:(a)超细钢渣微粉能明显提高钢渣的胶凝活性,降低钢渣粉掺量对复合水泥性能的影响,促进钢渣复合水泥的水化硬化过程和反应程度,改善水泥石孔结构。(b)所选的七种化学激发剂均能显著提高钢渣的水化硬化性能,其中效果最好的为Na2SO4和TEA。无机激发剂能提高钢渣复合水泥的早期性能,但会降低后期性能,而有机激发剂对钢渣复合水泥的早后期性能均有提高作用。(c)热养护对钢渣粉及其复合胶凝材料性能的影响与热养护时间有紧密关系,热养护时间越长,对早期性能的提高越有利,但对后期性能可能会产生不良影响,应综合早后期性能需求来选择适宜的热养护时间。基于Fuller分布提出了钢渣-矿渣-水泥三组分高性能复合水泥(“Fuller-SS-S-C水泥”)的组成模型,即:保持复合水泥的整体颗粒级配符合Fuller分布,但其0-15μm、15-30μm、30-45μm和45-80μm区间的颗粒分别由SS-S-C、C、SS-S和SS组成,并通过改变0-15μm区间内SS-S-C的组成比例来调整“Fulller-SS-S-C水泥”的性能。依据此模型制备的“Fuller-SS-S-C水泥”具有良好的物理、力学性能和致密的浆体结构。