论文部分内容阅读
目前,工矿企业在生产经营过程中,会排放大量含重金属(如Pb、Cu、Zn和Cd等)的工业废水,造成严重的水环境重金属污染。重金属在环境中具有生物累积性,很难被生物降解,对环境和人体健康造成了直接威胁,因此,必须对排放的重金属废水进行处理,使之达到《再生铜、铝、铅、锌工业污染物排放标准》(GB31574-2015)。实际重金属废水处理方法主要有物理法、化学法和生物法。物理法适用于处理含量低、毒性大、有回收利用价值的重金属,但其最大缺点是成本太高。化学法具有处理范围广、简单高效和操作方便的优点,但该法容易造成二次污染、废渣也较多。生物吸附法主要是通过离子交换、物理和化学作用来去除废水中的重金属离子,它具有材料来源广泛、廉价、经济高效和无二次污染等优点。寻找良好的吸附材料是现阶段研究重点,其对于处理重金属废水具有重要价值与意义。本研究以海藻酸钠、核桃壳粉、Fe3O4颗粒和聚乙烯泡沫为基础材料,制备出含聚乙烯泡沫和不含聚乙烯泡沫的两种生物吸附剂。另外,利用水热合成法制备和氨三乙酸改性得改性介孔分子筛吸附剂。(1)探讨了超声技术对不含聚乙烯泡沫生物吸附剂处理含铅废水的增强去除效果;(2)研究了含聚乙烯泡沫的复合生物吸附剂(AMWSF)在气升磁性分离循环系统中对含铅废水的吸附效果;(3)研究了改性介孔分子筛吸附剂对含铅废水的吸附效果。最终对不同吸附条件(pH、吸附剂投加量、反应温度、反应时间和初始Pb2+浓度)进行优化,探讨了吸附动力学和等温吸附特性,对吸附性能和机理展开研究。取得成果如下:(1)超声与对照处理实验中,pH 6.0、吸附剂投加量0.1 g、25℃、反应时间120 min和100 mL溶液中铅离子浓度为100 mg·L-1是超声处理最优条件。超声处理时,吸附容量从69.62 mg·g-1提高到90.85 mg·g-1;达到平衡反应时间从240min缩短到120 min。超声处理过程符合准二级动力学模型和Langmuir等温吸附模型。生物吸附剂的羟基、氨基、酰胺基和羧基在去除铅离子中发挥了重要作用。实际工业废水的超声处理试验,达到了增强去除效果,为以后工业规模的重金属废水去除提供了理论支撑与技术指导。(2)在气升磁性分离循环系统中,AMWSF吸附铅离子最优pH、吸附剂投加量、反应温度和反应时间分别在6.0、0.1 g、25℃和180 min达到。AMWSF的平衡吸附容量可以达到69.45 mg·g-1。通过准二级动力学和Langmuir等温吸附模型可以很好地描述吸附过程。通过SEM-EDS分析表明有含铅结晶在AMWSF表面生成,FTIR表明在去除铅离子过程中,羧基、羟基、羰基和氨基起重要作用。通过竞争吸附实验证实,共存重金属离子Cu(II)、Cd(II)和Zn(II)对Pb(II)去除具有拮抗作用,拮抗作用强度顺序为Cu(II)>Cd(II)>Zn(II)。气升磁性分离循环系统减少了机械搅拌AMWSF的剪切力破坏,使得AMWSF可以有效地重复使用7次。(3)利用水热合成法制备和氨三乙酸改性得到的改性介孔分子筛吸附剂能够很好地处理含铅废水,平衡吸附容量达到40.8 mg·g-1。改性介孔分子筛吸附剂处理含铅废水最优条件:pH 6.0、吸附剂投加量0.6 g、温度25℃和反应时间60 min。改性介孔分子筛处理含铅废水过程符合准二级动力学(R2=0.997)和Langmuir(R2=0.999)等温吸附模型。由SEM图可得:吸附剂表面絮状结构出现更多亮晶,说明经氨三乙酸改性提高了吸附剂结合铅离子的能力。FTIR图揭示改性介孔分子筛吸附剂表面的氨基、羟基、烷基、酯基和羧基参与了铅离子吸附过程。