考虑扭振特性的行星耦合PHEV模式切换协调控制研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:wugailin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
行星耦合混合动力传动系统(Planetary Coupling Hybrid Transmission,PCHT)作为新能源汽车特别是混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)常用的核心部件,能够为车辆提供灵活的动力耦合方式、紧凑的结构布置和高效的传动效率,从而得到了广泛的应用。然而,其复杂结构为模式切换品质带来了诸多挑战,深入研究行星耦合系统扭振特性、并在此基础上设计协调控制器,对提升模式切换过程平顺性具有重要的理论意义和工程价值。本文以某型行星耦合PHEV为对象,展开考虑扭振特性的行星耦合PHEV模式切换协调控制研究。(1)针对行星耦合PHEV模式切换过程中存在多源宽频段激励耦合进而引发较大瞬态扭振的问题,以轮齿广义转动角度为动力学变量,建立考虑齿轮非线性动态啮合刚度的PCHT扭振模型,以及电机、发动机、离合器等动力部件的模型,为模式切换动力学分析提供基础。(2)选取PHEV在行进间启动发动机的典型模式切换工况为研究对象,建立纯电模式切换到混动模式的分阶段动力学方程,并基于连续小波变换展开全频段下系统瞬态扭振特性分析。结果表明,齿轮非线性动态啮合刚度这一系统内激励与动力部件转矩波动的外激励相耦合,加剧了模式切换过程中100~5000Hz高频的瞬态扭振,对传动系统的稳定性造成影响。(3)充分考虑由纯电模式到混动模式(Electric Mode to Hybrid Mode,EM-to-HM)模式切换过程的离散-连续特性,基于混合逻辑动态的混杂建模方式,结合模型预测控制,设计考虑扭振特性(Torsional Vibration of Meshing Gear,G-based)的行星耦合PHEV模式切换混杂模型预测控制策略(Hybrid Model Predictive Control,HMPC),并选用混合整数线性规划(Mixed Integer Linear Program,MILP)的方法求解HMPC预测步长内的最优控制序列,最终实现G-based HMPC方法有效抑制了整车冲击度和PCHT扭振。(4)搭建基于NI架构的硬件在环(Hardware in the loop,Hi L)测试平台,验证G-based HMPC的控制效果的有效性和实用性。该控制方法将整车冲击度控制6.91m/s~3以下,同时抑制了约23.39%的模式切换瞬态扭振的均方根值。
其他文献
钛微合金化高强钢因为其相对低廉的生产成本和优良的综合性能而受到了广泛的关注。目前,对其物理冶金学特征已进行了较为系统的研究,现阶段普遍认为,细晶强化和沉淀强化是其主要的强化机制。但由于缺乏对比研究,仍无法深入阐明钛元素在低碳钢中的作用机理。因此本文以低碳钢的成分为设计基础,添加0.10%的钛元素,利用Gleeble 3800热模拟机对两种材料在变形和冷却过程中的组织演变和强化机理进行对比研究。本文
近年来,多孔有机框架材料因具有结构稳定、比表面积高、孔道结构高度有序、孔径可调、易于功能化以及种类丰富等优势,使其在传感、气体吸附、超级电容器等领域得到广泛应用。多孔有机框架材料主要包括金属有机骨架(MOFs)、共价有机框架(COFs)、氢键有机框架和超分子有机框架等,特别是MOFs和COFs材料,在储能领域极具发展潜力。然而,由于材料导电性和稳定性稍差、孔道结构单一,致使其高比表面积和丰富的孔道
随着科技的飞速发展,全球变暖、能源危机日益严峻,轻质铝合金受到研究者的青睐,晶粒细化一方面可保证材料优异的强塑性,另一方面会导致溶质原子再分布,这对材料机械性能及热稳定性有很大的影响。因此本文选用五种不同成分Al-Mg合金研究高压扭转(HPT)后材料溶质原子的分布规律和机理。根据X射线衍射(XRD)结果计算不同合金的晶格常数和平均微观应变;利用透射电子显微镜(TEM)观察不同合金的微观组织并统计晶
史氏鲟(Acipenser schrenckii)具有独特的饮食特性、经济以及生态价值,在世界范围内被广泛养殖,但随着鲟鱼养殖量的逐年增加,大量的加工废弃物造成了严重的资源浪费与环境污染。鱼鳔是鲟鱼加工主要的废弃物之一,其干制品又名花胶,在中医记载中具有补肾益精、滋养筋脉、延缓衰老等功效,但其功效及分子机制尚未被现代科学研究所证实,导致其市场应用仍备受争议。本文以鲟鱼鳔为原料制备胶原蛋白肽(CPs
板状结构特别是复合材料板结构在航空航天、高铁、土木工程等诸多领域中应用越来越广,而在长期服役过程中这种结构易受到外部荷载冲击、化学腐蚀等作用产生裂纹、层裂、疲劳等损伤。超声Lamb波无损检测技术由于其检测效率高、适用于大范围检测以及可以实现微小损伤识别等优势,在板状结构的损伤检测中具有广泛的运用。超声Lamb波在板状结构传播过程中存在多模态及频散效应,并且多种模态并存会导致采集到的时域信号波包混叠
在当今储能领域中,锂离子电池占据主导地位。但目前商业锂离子电池的发展正面临瓶颈,受到安全风险的限制,如低沸点有机液态电解质导致的泄漏、燃烧甚至爆炸。采用固态电解质是解决安全问题的一种最有效的策略。其中,聚合物固态电解质因其具有低易燃性,良好的柔韧性,优异的热稳定性和高安全性等优点成为重要的技术方向之一。但是,聚合物固态电解质的室温离子电导率低和界面接触差仍然是其商业化发展的主要挑战。本文针对上述问
作为典型的轻量化材料,镁合金在诸多应用领域都是理想的工业材料。但是,镁合金耐蚀性差是限制其作为结构材料规模化应用的关键障碍。激光冲击强化(Laser shockpeening,简称 LSP)和表面磷化(Surface phosphate conversion,简称SPC)是提高镁合金耐腐性能的两种有效的表面处理方法,随着工业化的进步,复杂极端的服役环境对结构材料提出了更高的要求,单一的表面处理技术
车灯技术伴随着需求的多样化和科技的驱动不断发展,形态及功能也日趋细化。光导作为车灯的增亮部件尤为关键,可以保证发光的均匀,增强车灯明亮度,广泛应用于汽车雾灯、昼行灯和尾灯等车灯中。针对光导塑件容易出现翘曲与收缩的现象,本文以厚度约10mm,最大外形尺寸约150mm×215mm×200mm的某汽车前组合灯条状透明PC光导为研究对象。从原材料、注塑机、模具和成型方式四个方面介绍了光导成型技术,并从多点
随着气候问题的变化和经济发展的需要,践行绿色低碳行为的理念日益深入人心。为合理估算新形势下的碳社会成本,更好地制定相关碳政策,本文主要研究了以下两方面内容:(1)基于人们践行绿色行为的视角,从经济、效用、气候三个模块构建新型碳社会成本模型,研究不同气候状态下的最佳碳社会成本。经济模块中构建了绿色行为产出量以刻画绿色行为产生的价值,对于其他各函数的设置和函数间的相互影响考虑的更加全面。效用模块中除了
随着我国机动车保有量快速增长以及交通运输行业的快速发展,道路交通事故造成的财产损失和人员伤亡给人们的正常生活带来巨大影响。如何有效减少交通事故,提高道路交通安全成为一大难题。在道路交通系统中,驾驶人是主体,驾驶人的行为与道路交通安全关系密切;在相同的道路交通环境下,不同驾驶人的驾驶习惯存在较大差异性,所面临的事故风险也各不相同。因此,分析不同驾驶人的行为特性,构建评估指标体系对驾驶人行为的安全性进