基于事件相机的无人机目标跟踪算法设计与实现

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:kyn5210
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
如今无人机已经在各个领域发挥着不可替代的作用,而目标跟踪任务对于无人机来说又是一项极为重要的功能,例如民用无人机的移动跟拍功能、消防无人机用来跟踪山火的走势功能等等。所以能够研发出有效的适用于无人机应用场景的目标跟踪算法显得尤为重要。以往的单目标跟踪算法大致分为两类,一类是传统方法,例如基于相关滤波的单目标跟踪算法;另一类是深度学习的方法,例如基于孪生神经网络的单目标跟踪算法、基于可见光和红外的融合跟踪算法。但是当无人机仅搭载RGB相机时,无法有效的适应较为复杂的无人机跟踪场景,现有的方法面临着如下问题:第一,由于桨叶拉力和离心力产生共振和外界风力影响,相机拍摄的图像会出现运动模糊,无法有效的利用计算机视觉的算法进行单目标跟踪;第二,无人机的工作环境较为复杂,传统相机结合视觉算法在复杂光照场景下具有低鲁棒性,使得无人机在夜间或者过曝光的场景下无法有效的跟踪物体;第三,在无人机边缘计算的场景下,对于嵌入式的模型计算速度要求较高,没有经过加速优化的模型难以适应边缘计算的场景。为了解决上述无人机视角下的目标跟踪出现的问题,本文采用无人机搭载DAVIS事件相机进行目标跟踪。事件相机相比于传统的相机有三大特点:高时间分辨率、高动态范围和低功耗,其不仅可以传输灰度图(APS图像),还可以传输事件信息。由于DAVIS本身特殊的成像机制,不会因目标物体快速运动而产生成像模糊,能够有效的适应无人机的抖动场景,并且在特殊光照等复杂场景下相比于RGB相机能够更为有效的采集待跟踪物体的边缘信息。根据这些特点本文设计基于事件与灰度图的双模态融合跟踪网络,有效的利用事件域数据的边缘信息和APS域数据的纹理信息,结合两个模态信息进行目标跟踪。为了能更好训练事件与灰度图双模态融合跟踪网络,本文采用运动捕捉系统Vicon自行制作无人机视角下的目标跟踪数据集:Event-APS28。除此之外,为了适应无人机的边缘计算场景,本文采用TensorRT技术对已经训练好的双模态融合跟踪网络模型进行优化加速,最终将优化后的模型部署在Jetson TX2,在无人机端实现边缘AI计算。实验证明,相比于其他目标跟踪算法,本文提出的方法能够更加有效的适用于无人机场景下的目标跟踪任务,并通过TensorRT等优化方法将跟踪策略移植到无人机端,实现无人机在真实场景下的快速跟踪。
其他文献
近年来,中国各级检察院、法院不断推动智慧司法建设,扩大司法领域信息化应用范围。同时,与日俱增的海量文书处理工作也对相关司法部门的信息系统提出了挑战。文本自动摘要是自然语言处理的一项重要任务和研究热点,目的是让机器能够自动地完成信息的选择、压缩以及抽象,并输出被人类所能理解的文本。文本自动摘要能够提高信息获取效率,和具体业务流程相结合,可以减轻用户的工作负担。因此,面向法律文本的摘要算法和应用研究,
近年来,随着全球定位技术和无线通信网络的快速发展,轨迹数据更易于被采集与使用,为城市交通规划、出行规律挖掘、兴趣点推荐等应用提供重要价值。但是,由于轨迹数据具有数据规模大、异频采样性、数据质量差等特性,直接影响了轨迹数据的挖掘效果和计算效率。为此,大规模轨迹数据的分析与处理一直属于学术界和工业界关注的焦点。在大规模轨迹数据的分析与处理中,轨迹相似性查询一直属于关键操作之一,是实现移动行为规律挖掘、
随着近年来智能手机的广泛使用与移动社交平台的流行,使得基于位置社交网络(Location-based Social Networks,LBSN)业务得到了快速的发展,其中包括了兴趣点(Point-of-interest,POI)推荐。POI推荐通过用户生成的签到历史,推测用户感兴趣的POI,在大量的POI候选集中个性化地预测用户下一个时刻将要访问的POI。这使得用户个性化出行体验得到了较好的提升。
超疏水微柱阵列具有特殊的水滴润湿性,能够应用于机翼防结冰、船舶航行减阻等领域,但其制备工艺仍存在制备成本高、制备设备要求高、工艺通用性低等不足之处,使得通用的变直径超疏水微柱阵列制备工艺相较于平整超疏水表面构建工艺更加难以运用于工程实践中,难以大规模推广。针对以上问题,本文提出了一种使用弯月面约束电化学3D打印方法制备变直径金属柱的制备工艺,在单次工艺中直接构建跨尺度的柱结构与柱阵列,实现宏微一体
随着科学技术的进步以及经济水平的提高,监控摄像机已经深入到社会各个角落,对社会稳定做出了巨大贡献。然而,数以万计的监控摄像机每天会产生不计其数的视频图像数据,并且监控视频中包含异常行为的片段或许不到万分之一,单靠人工的观察识别会浪费大量的时间,也容易遗漏重要的信息。如果计算机能自动识别出视频中每个人的行为,并对异常行为发出警报,将会节省大量的人力物力。因此,视频中的异常行为识别技术具有重要的研究意
现代安全防护领域多采用基于云计算的人工视频监控方法,在监测低概率出现的异常目标时,监控系统易出现由于视频信息冗余导致网络资源浪费、数据传输存在延迟以及人为失误导致检测质量下降等问题。边缘计算通过在网络边缘端对前端采集数据进行实时分析运算,可以有效减轻云端负载压力,提高系统响应实时性。同时随着深度学习技术尤其是目标检测算法迅猛发展,使得视频监控更加高效智能,有效缓解人工视频监控方法存在的缺陷。因此,
随着移动互联网的飞速发展,定位技术的进步,下一个位置预测已经成为了一项重要研究任务,这对于用户和商家具有重要意义。然而由于用户签到数据的稀疏性、相关特征的复杂关联,下一个位置预测存在巨大挑战。首先,现有下一个位置预测算法缺乏针对某一位置的具体行为模式分析,导致无法充分建模用户的历史行为模式及短距离出行模式。其次,现有模型使用的地理空间特征通常不包含公共交通特征,导致无法有效建模用户长距离出行模式。
幸福是指人类主观上产生的愉悦情绪。它是情感中的积极部分,影响着人们的生活质量。因此,理解人类幸福感是一项有意义的工作。本文主要讨论幸福感的两个方面(Agency/Sociality)。为了拓宽人们对幸福感的感知情况,本文在英文数据集Happy DB和中文数据集Weibo DB上分别对幸福感展开研究。为了分析幸福感的Agency和Sociality方面,在Happy DB数据集上,本文提出了一种基于
小样本图像分类是指从几个简单的例子中学习视觉概念。人类能通过视觉中心充分利用几个样本的特征信息,也能在学习过程中学会学习。本文以元学习为基础,从特征提取和学会学习两个方面提高小样本分类的准确率。为了在小样本图像分类过程中能充分利用图像通道和空间特征的位置信息,本文提出特征交叉注意力方法,该方法首先沿着通道和空间维度全局池化生成特征信息,然后通道和空间特征分别与原有特征交叉使得具有相似特征的位置互相
车辆重识别是指给定具体车辆在特定区域内的一张图像,根据车辆外观信息和部分辅助信息,检索出在不同摄像头下捕捉的同一车辆。车辆重识别技术是智慧交通建设的核心技术之一,对交通监管、道路安全、刑侦破案以及智能交通系统建设意义重大。随着深度学习的快速发展,车辆重识别技术近年来取得了重大进展,但车辆重识别仍面临如何解决类间相似度高和类内差异性大的挑战。深度网络推理加速是指利用有效的网络压缩方法对目前密集的深度