【摘 要】
:
在众多物联网的新兴技术中,数能一体化网络技术由于其能够延长能量受限节点的寿命,受到了相当大的关注。而自适应调制、发射功率控制等链路控制技术能够在不同信道等环境条件下,通过调节链路控制方案,来提高吞吐量、可靠性等性能。因此,在数能一体化网络这种新型通信网络中引入自适应链路控制技术是很有必要的。在过往的数能一体化网络技术的研究中,很少研究涉及自适应调制、自适应功率控制、自适应能量传输控制以及自适应多用
论文部分内容阅读
在众多物联网的新兴技术中,数能一体化网络技术由于其能够延长能量受限节点的寿命,受到了相当大的关注。而自适应调制、发射功率控制等链路控制技术能够在不同信道等环境条件下,通过调节链路控制方案,来提高吞吐量、可靠性等性能。因此,在数能一体化网络这种新型通信网络中引入自适应链路控制技术是很有必要的。在过往的数能一体化网络技术的研究中,很少研究涉及自适应调制、自适应功率控制、自适应能量传输控制以及自适应多用户调度的联合设计。而本文则聚焦于此,研究了数能一体化网络中的自适应链路控制技术。为了应对新一代无线通信中对于速率、可靠性、延迟这三者的要求,本文将在数能一体化场景下,聚焦自适应链路控制策略的设计,来提高网络传输中的平均频谱效率等性能,保证误码率和能量传输要求。为此本文研究了链路控制策略和能量传输对各种性能的影响,得到各种传输性能对应的数学表达,建立适用于数能一体化网络的优化模型。分别采用了凸优化和马尔科夫决策过程两种建模方法,设计了对应的求解算法,分别为遗传算法和深度强化学习算法。对比分析两者的优劣,发现马尔科夫决策模型将更适用于自适应链路策略的建模,并且基于神经网络的深度强化学习算法将更加适用于本文所提优化模型的求解。此外,为了提升链路控制策略的实际应用价值。本文从两方面入手,一方面是解决了不同业务需求下链路控制策略的实用性。所设计的自适应链路控制策略能适应业务的变化,自主学习并且快速重新收敛。为此,本文提出了两种加快收敛的技术(模仿学习、优先经验生成),对现有深度强化学习算法DQN进行了改进,大大提高算法收敛速度。使得算法能够在更短时间内在变化的环境中重新收敛并且达到较高的性能,从而适用于业务需求不同和业务需求可变的实际场景。另一方面,将点对点的链路控制策略推广到了多用户传输场景,设计了能够配合本文提出的点对点自适应链路策略的多用户调度方案。同时为了应对环境变化和时延使得调度策略失效的问题,利用深度强化学习技术,设计出能够考虑未来环境变化的多用户调度策略。利用多用户分集特性,在能量传输效率、总体传输时间性能以及公平性上进行了优化。
其他文献
分布式声波传感(DAS)可以用来测量传感光纤周围环境中的许多物理量,相位敏感光时域反射仪(Φ-OTDR)作为DAS的一个主流技术,因其传感距离长、灵敏度高和良好的动态检测能力,一直备受学者关注。近年来,以超弱光纤布拉格光栅(UWFBG)阵列为传感介质的Φ-OTDR,也称为准分布式声波传感(Q-DAS),相比以单模光纤(SMF)为传感介质的普通Φ-OTDR有更高的灵敏度和信噪比,已经成为光纤传感中颇
企业的生产经营过程中会形成大量的档案,这些档案可为企业未来积累丰富的经验,具有重要意义,为此越来越多的企业开始重视档案管理工作。然而档案的保存是一个综合课题,档案的保存周期与库房的各项物理条件息息相关,若保存不当,则档案保存周期非常短,因此需要有一套行之有效的方案来实现自动化管理,基于此,中国移动自贡分公司领导提出构建远程档案库房监控系统。从中国移动自贡分公司综合部实际应用需求出发构建了库房监控系
基于相位敏感型光时域反射仪(phase-sensitive optical time domain reflectometer,Φ-OTDR)的光纤分布式声波传感(distributed acoustic sensing,DAS)技术因其传感点密集、灵敏度高、传感距离长等优势而逐渐成为新一代的声波感知技术。DAS技术利用光纤的后向瑞利散射光的相位信息,可对光纤沿线微小扰动信息进行声波信号的探测,从
基于Φ-OTDR技术的分布式光纤振动传感系统通过检测瑞利散射光信号中所携带的相位信息进行传感,用以实现高密度、长距离的分布式振动传感,目前已广泛用于石油物探、结构健康检测、管线安防等领域。Φ-OTDR系统虽可实现分布式振动探测,但相比于点式光纤地震检波器其灵敏度不高,对微弱振动信号无法有效探测,限制了其在地震勘探中的应用。本文主要研究基于Φ-OTDR系统的矢量光纤地震检波器,通过声波增敏提高系统在
随着用户数量的增加以及用户对服务质量要求的提高,基于软件定义网络(SDN)实现的网络资源管理与控制变得越来越困难。很多中心控制的网络管控问题都可以被建模成NP难的组合优化问题,在当前的设备求解能力下几乎不能在短时间内获得最优解。本文基于训练好的神经网络可快速推断这一优势,设计出了基于深度学习的网络管控问题求解框架,此框架可以学习网络管控问题历史求解经验,使用神经网络直接求解新的网络管控问题。利用此
多元时间序列预测是机器学习领域非常重要的问题,可以应用在多个领域,比如电力消耗、交通拥堵情况以及疾病预测等。随着时间维度的引入,数据的维度和规模会大大增加,因此会带来一系列问题,比如梯度消失、梯度爆炸、以及无法很好地捕捉数据短期和长期间的依赖关系等。在医学领域,急性肾损伤(Acute Kidney Injury,AKI)需要医生根据患者的历史状态进行经验性的诊断,根据患者的真实数据本文发现医生对于
基于相敏光时域反射仪(Φ-OTDR)的分布式声波传感系统(DAS)被广泛应用于安全监测。真实环境中振动源时变与干扰时刻存在,导致采集的DAS传感信号比在安静环境或实验室环境中更易出现未知畸变和冲击,这意味着实际环境中信号实际蕴含的振动模式易被其它干扰振动源的振动模式掩盖,信号特征易被其它干扰振动源的特征模糊化甚至擦除,使得时变、多振源干扰的复杂环境下振动源识别难度大,识别率亟待提高。为了解决这一问
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)作为一种多载波调制技术,以其高频谱效率、对多径效应的鲁棒性、以及基于快速傅里叶变换的可实现性而备受关注,目前已经在现代通信系统中得到了广泛应用。然而,在OFDM系统中,较大的信号包络波动是其主要的缺点。由于发送端的放大器(Power Amplifier,PA)的线性范围有限,若信号峰值过高
随着互联网的迅速发展以及用户的激增,网络流量数目正在攀升,网络环境也变得日益复杂。为了实现网络管理和网络安全的需求,网络流量分类技术研究的重要性越发凸显,但传统的流量分类方法已经不能适应现代互联网的发展趋势。而随着人工智能领域的蓬勃发展,越来越多的研究者开始将机器学习技术应用在网络流量分类方法的研究之中。虽然已有很多研究为网络流量分类领域做出了有价值的贡献,但仍存在着一定的问题。真实网络环境中,获
语音关键词检测是近年来新兴的、热门的一项技术,此项技术能够从环境中检测特定的语音内容,目前已经得到了广泛的应用,比如智能音箱、语音助手等。近年来,由于神经网络在各个领域的成功应用,这也极大地促进了语音关键词检测技术的发展。尽管当前主流的关键词检测技术在预置关键词上已经能够获得极高的识别准确率,但是却仍然存在无法支持用户自定义关键词,或者在自定义关键词准确率极低的问题。为了解决上述问题,本文创新性地