论文部分内容阅读
加速器控制系统一般是基于网络的分布式控制系统,遵循所谓的“标准模型”(Standard Models),由三部分组成:the Operator Interface、Data Communication、the Front-end Computers。数据通信在加速器控制系统中起着纽带的作用。随着加速器规模的增大和复杂度的提高,对数据通信性能的要求越来越高,而实时性是影响控制系统的关键因素,开展这方面的应用研究具有非常重要的工程应用价值。Ethernet POWERLINK(简称POWERLINK)作为一种开源实时以太网技术已广泛应用于工业控制领域,特别是有高实时性需求的场合,例如高性能的同步运动控制应用,但是在加速器控制领域,与POWERLINK相关的研究和应用还很少。EPICS作为加速器控制领域中应用最广泛的开发平台,目前还未见与POWERLINK相关的应用与研究。本论文将POWERLINK实时以太网技术和EPICS结合起来,开展了一系列的应用研究工作。
首先对POWERLINK通信协议进行了分析和性能测试。基于POWERLINK协议栈的开源实现版本openPOWERLINK,分别搭建了基于RT-Linux PC和FPGA软核的两套测试系统。采用网络分析仪netANALYZER和Wireshark软件抓取并分析了POWERLINK数据帧,掌握了POWERLINK协议的数据帧结构和通信机制,并测试了两套系统的通信周期。还根据测试系统的实测通信参数,发展了理论计算和仿真建模两种方法来估算POWERLINK系统的通信周期。
其次设计了EPICS环境下基于千兆POWERLINK的分布式IO系统。系统从站采用基于Zynq的控制器,主站是一台RT-Linux PC,PC上运行了IOC应用程序和内核空间下的openPOWERLINK主站程序,基于进程间Socket通信开发了相应的EPICS设备驱动程序。搭建了1个主站和10个从站组成的测试系统,测试系统的通信周期最快可到275μs,控制器本地响应时间约为400μs,系统全局响应时间为870μs。通过对系统测试结果的分析,发现从站的光耦延时和主站响应延时是影响系统性能的主要因素。针对这两点,设计了相应的改进方案,改进方案的主从站均采用Zynq控制器来实现,从站控制器的输入/输出接口电路采用ADuM1400高速数字隔离器。基于改进方案搭建了由1个主站和5个从站组成的测试系统,系统的通信周期最快可到50μs,从站的本地响应时间为5μs,系统全局响应时间为160μs,测试结果表明改进方案的实时性能明显得到了提升。根据改进方案的实测结果,进一步完善了理论计算和仿真建模方法,从而为POWERLINK的应用设计提供了依据。
最后基于千兆POWERLINK设计了合肥先进光源设备保护系统(Hefei Advanced Light Facility Equipment Protection System,HALF EPS)。HALF是由国家同步辐射实验室提出的第四代基于衍射极限储存环的同步辐射光源,目前正在开展HALF预研工程建设。HALF EPS由注入器分总体EPS和储存环分总体EPS组成,各分总体EPS基于独立的千兆POWERLINK设计,联锁控制器采用Zynq控制器。对HALF EPS的联锁保护逻辑进行了描述,统计了联锁信号的数量。通过理论计算和仿真建模两种方法估算了注入器EPS的响应时间分别为802.100μs和798.184μs,储存环EPS的响应时间分别为1.643ms和1.634ms,均满足10ms响应时间的设计指标。最后基于Archive Appliance设计了HALF EPS的历史数据存档与查询系统,基于Phoebus/Alarms设计了HALF EPS报警系统。
首先对POWERLINK通信协议进行了分析和性能测试。基于POWERLINK协议栈的开源实现版本openPOWERLINK,分别搭建了基于RT-Linux PC和FPGA软核的两套测试系统。采用网络分析仪netANALYZER和Wireshark软件抓取并分析了POWERLINK数据帧,掌握了POWERLINK协议的数据帧结构和通信机制,并测试了两套系统的通信周期。还根据测试系统的实测通信参数,发展了理论计算和仿真建模两种方法来估算POWERLINK系统的通信周期。
其次设计了EPICS环境下基于千兆POWERLINK的分布式IO系统。系统从站采用基于Zynq的控制器,主站是一台RT-Linux PC,PC上运行了IOC应用程序和内核空间下的openPOWERLINK主站程序,基于进程间Socket通信开发了相应的EPICS设备驱动程序。搭建了1个主站和10个从站组成的测试系统,测试系统的通信周期最快可到275μs,控制器本地响应时间约为400μs,系统全局响应时间为870μs。通过对系统测试结果的分析,发现从站的光耦延时和主站响应延时是影响系统性能的主要因素。针对这两点,设计了相应的改进方案,改进方案的主从站均采用Zynq控制器来实现,从站控制器的输入/输出接口电路采用ADuM1400高速数字隔离器。基于改进方案搭建了由1个主站和5个从站组成的测试系统,系统的通信周期最快可到50μs,从站的本地响应时间为5μs,系统全局响应时间为160μs,测试结果表明改进方案的实时性能明显得到了提升。根据改进方案的实测结果,进一步完善了理论计算和仿真建模方法,从而为POWERLINK的应用设计提供了依据。
最后基于千兆POWERLINK设计了合肥先进光源设备保护系统(Hefei Advanced Light Facility Equipment Protection System,HALF EPS)。HALF是由国家同步辐射实验室提出的第四代基于衍射极限储存环的同步辐射光源,目前正在开展HALF预研工程建设。HALF EPS由注入器分总体EPS和储存环分总体EPS组成,各分总体EPS基于独立的千兆POWERLINK设计,联锁控制器采用Zynq控制器。对HALF EPS的联锁保护逻辑进行了描述,统计了联锁信号的数量。通过理论计算和仿真建模两种方法估算了注入器EPS的响应时间分别为802.100μs和798.184μs,储存环EPS的响应时间分别为1.643ms和1.634ms,均满足10ms响应时间的设计指标。最后基于Archive Appliance设计了HALF EPS的历史数据存档与查询系统,基于Phoebus/Alarms设计了HALF EPS报警系统。