基于电化学海水提铀的缺陷型硫催化剂的构筑

来源 :西南科技大学 | 被引量 : 0次 | 上传用户:Dean_NEU
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为核电运行重要的核燃料,铀的供应是保障核电可持续发展的关键,然而陆地上已探明的铀矿石储量只能提供全球70年左右的核能消耗。海洋中铀的蕴含量是陆地上已探明铀储量的近1000倍,因此海水提铀技术可保障核工业的可持续健康发展。作为新兴的海水提铀方法,电化学海水提铀具有萃取动力学快、吸附容量高、易解吸等优势。然而,目前电化学海水提铀面临外加电力、电极材料活性低等问题,亟需开发兼具高电化学活性位点和高选择性铀酰配位位点的电极材料。本文从电化学基本原理出发,以电化学还原反应的高活性位点—硫缺陷为研究对象,通过对缺陷的精准调控,实现电化学海水提铀效率和容量的提升。论文开发以下电极材料:本文以硫基催化剂作为研究对象,成功制备了硫边界缺陷的Mo S2纳米片(S-terminated Mo S2)和硫掺杂的S-Fe2O3纳米线,研究了缺陷型硫催化剂构造和海水提铀性能的关系,将这两种缺陷型硫催化剂应用于电还原海水提铀,并结合理论计算和各种表征手段进行电还原的机理研究。本论文主要获得的如下结果:(1)通过水热法构建了具有丰富电化学活性位点的、硫边界缺陷的Mo S2纳米片作为有效结合和还原铀的电催化剂。在铀的电化学提取中,与原始Mo S2纳米片相比,硫边界缺陷的Mo S2纳米片显示出更高的提取动力学和容量。在-3 V的外加电压下,硫边界缺陷的Mo S2纳米片在100 ppm掺铀海水中表现出1823 mg/g的铀提取能力,对铀提取率超过了90%。在含100倍浓缩铀(330 ppb)的100 m L真实海水中电解30 min后,仅消耗8.7 m·Wh电量,表现出优异的海水提铀效果。(2)随后设计了硫基S-Fe2O3纳米线作为高效海水提铀的电催化剂,利用光电转换实现了海水中铀的高效电化学还原,解决了前一章电能供给问题。在含330 ppb铀的模拟海水中,S-Fe2O3电还原30 min,可提取28.7μg的铀,其提取率高达87%。在真实海水中,经过10次电化学萃取-解吸循环,S-Fe2O3纳米线可将3 L海水浓缩到含U(VI)414.3ppb的20 m L硝酸钠溶液中。同时我们评估了在浓缩真实海水消耗电量,仅为70 m W·h。同时将电化学提铀装置与光伏组件连接,在20 L真实海水中,通过太阳能供电3 h,沉积在电极上的铀可达31.6μg,提取率达到接近50%。综上所述,两种缺陷型硫催化剂具有制备流程简单、产量大、电化学海水提铀性能优异、稳定性好等优点,在实际应用中前景较大,可为海水提铀的吸附饱和、环境复杂等问题提供一种参考解决方案。同时通过太阳能耦合装置可以实现无外加电源供给电量,实现绿色环保海水提铀。
其他文献
随着现代科技与社会的快速发展,无人机在多领域取得了广泛的应用,其功能与应用场景亦愈发复杂,对高度信息的可靠性需求不断增加。提升高度信息的准确性与稳定性可以令无人机飞行过程更加稳定,从而完成复杂的任务,对现阶段及未来无人机的应用与发展有着重要意义。现阶段无人机获取高度信息的方式多是通过单一传感器测高或者通过多传感器融合在算法层面上进行优化,提升幅度相对有限。本文基于多传感器融合的方式,在硬件与算法两
学位
炸药成分分析常采用重量分析法,且人工操作的环节较多,多个环节具有简单重复性,分析效率较低。为此,本文研究并设计了一种基于重量法的炸药成分分析自动化系统。论文主要工作如下:(1)设计了自动化系统组成结构。在分析研究了炸药成分重量法分析的人工操作工艺流程后,根据需求,从总体上设计了系统平面布局图、系统组成结构图,设计了自动化系统软硬件功能,拟定了需要研究解决的几个关键技术及主要控制指标。(2)研究了实
学位
自动导航车(Automated Guided Vehicle,AGV),具有高度智能、高效、可靠等特点,广泛应用于仓储物流、工业生产柔性化车间等领域,用以完成物料搬运和工作平台移动等任务。随着其用途的不断扩展,在智能无人系统中,AGV的导航方法成为研究热点。在工业生产和日常生活中,为了让AGV适应室内外非结构化动态环境,传统固定导轨和人工标识的导航方法不再独立适应此类环境。结合众多导航方法,本文提
学位
比色分析是一种利用显色剂,通过颜色变化来测定待测样品中化学元素或化学物质浓度的方法。由于比色测定法具有操作简便、使用便携式设备、成本低和能用肉眼读出等优点得到了广泛的研究。这些特征使得各种比色测定法对于现场检测目标分析物极为有用,尤其是在资源有限的地区。本文构建了两种串联显色体系,并成功应用于四种典型危化品的分析检测应用中,具体内容如下:一、我们开发了一种基于耦合化学氧化与光诱导自由基链反应的串联
学位
二硝酰胺铵(ADN)被认为是在未来军事武器和航天推进器中可以替代高氯酸铵的高能化合物之一,ADN具有高能量、高含氧量、不含卤元素、低特征信号等优势,与联氨相比具有更低的毒性。ADN基固体推进剂被引入到导弹和航天助推器系统中能够大幅度提升装备的运载能力,然而ADN吸湿性强的特点严重影响了其在固体推进剂中的应用,因此解决ADN的强吸湿性、提高样品纯度是至关重要的。本文主要采用几种提纯方法对ADN进行分
学位
纳米铝粉作为最常见的活性金属燃料,因为其高反应活性除了被广泛应用在纳米铝热剂中外,还被应用在推进剂、火炸药等复合含能材料配方中用以提高推进、毁伤能力。然而,纳米铝粉在生产、储存以及使用中因为表面的惰性氧化铝外壳和纳米粒子的团聚作用,使得纳米铝粉的反应活性和安全性受到限制。受益于3D打印技术的发展,将纳米铝粉用于制备含氟铝热剂墨水可以有效降低纳米铝粉的团聚现象,也提升了纳米铝粉的安全性,氟聚物因为独
学位
现代武器系统和含能材料的发展主题一直离不开更高的能量水平和优异的燃烧性能。环三亚甲基三硝胺(RDX)、环四亚甲基四硝胺(HMX)、六硝基六氮杂异伍兹烷(CL-20)等单质含能材料与亚稳态分子间复合物材料(MICs)集成为复合含能材料是提高整体能量系统性能的补充策略。本论文通过设计和调整微观结构,利用RDX、聚多巴胺(PDA)涂层和聚四氟乙烯(PTFE)/铝粉通过超声合成技术构建核壳结构复合材料。由
学位
随着社会的高速发展,化石燃料等常规能源物质带来的环境污染问题也日益严重。人们迫切需要一种更为清洁高效的能源来推动社会的发展,因此核能作为绿色能源在近年来得到高速发展。但是随着核能的发展,也存在一些关键技术问题。首先是陆地铀资源的稀缺性使得从海水中浓缩和提取铀成为影展响核能发的重大技术问题。其次,核燃料循环中产生的大量含铀废水严重破坏了社会和生态环境,这也对溶液中铀的去除和分离提出了更高的要求。MO
学位
在核能的发展利用中,不可避免地会产生放射性废物,尤其是高放废物。高放废物释热率高,且含有半衰期长、生物毒性强的放射性核素,必须对其进行有效的处理处置以保障核能的可持续发展。针对高放废物的处理,最有效的措施是固化。锆石(ZrSiO4)被认为是固化高放废物的候选基材之一,然而因化学剂量偏差或制备方法等问题,常获得含有第二相的SiO2/ZrSiO4复相陶瓷,对材料的性能会产生一定的影响。因此,研究SiO
学位
高氯酸铵(AP)作为固体复合推进剂的主要的能量组分,提升AP的燃烧性能、热分解性能、安全性能和防吸湿性能对于推动航空航天和军事化学的发展具有重要意义。超细高氯酸铵(UF-AP)拥有更快的燃烧速度,但AP的尺寸变小会导致其吸湿加剧和安全性能降低,AP热分解和安全性能之间相互矛盾也是行业难以解决的难题。本研究首先提出了一种简单高效的重结晶的方法细化AP,针对其细化后吸湿的难题,引入了超疏水的概念,选用
学位