论文部分内容阅读
针对陕西某太阳能电池生产企业含氟废水处理工程,采用原有的“碱性钙盐沉淀+铝盐絮凝沉淀”二级化学沉淀工艺参数运行,处理出水不达标的现象,在保持原有构筑物不变的前提下,在实验室尺度范围内对原有工艺参数进行优化,并应用于现场实践。针对二级化学沉淀法在工程应用中出现的为达标排放就必须以增加药剂消耗和环境风险为代价的问题,提出了“中性钙盐沉淀+铝盐絮凝沉淀”二级化学沉淀+活性氧化铝(γ-Al2O3)吸附工艺,在实验室条件下优化出各级处理单元的工艺参数,并探讨其可行性。考虑到γ-Al2O3在应用时存在吸附容量不大,再生频繁等问题,对此,提出了超声载铁活性氧化铝(简写为Fe/γ-Al2O3)的改性方案,并在小试范围内对超声载铁活性氧化铝(简写为Fe/γ-Al2O3)的制备方法、表征、除氟吸附性能、再生方法及在实际含氟废水处理中的应用进行了研究。本项目研究可为太阳能电池生产企业含氟废水的处理提供技术支持和新材料。实验室条件下获得的二级化学沉淀最优工艺参数为:一级用Ca(OH)2沉淀F-,pH控制在7-9,二级用Al2(SO4)3·18H2O絮凝残氟,pH控制在7左右,药剂投加量为2000mg/L以上,将此参数运用于实际工程,处理出水CF-仅为15mg/L左右,接近排放标准;实验室尺度范围内获得的二级化学沉淀+吸附工艺最优参数为:一级钙盐沉淀pH7-9,二级絮凝沉淀pH6.5-7.5,Al2(SO4)3·18H2O投加量500mg/L,吸附阶段γ-Al2O3的投加量为240g/L时,震荡8h,能将氟离子初始浓度为30mg/L,pH为7左右的含氟废水处理到10mg/L以下,能够达标排放。通过对Fe/γ-Al2O3制备方法、表征、除氟吸附性能及再生方法的研究,得出以下结论:①实验所获得的Fe/γ-Al2O3制备方法为,将γ-Al2O3投加到0.072mol/L的FeSO4·7H2O水溶液中,控制γ-Al2O3与FeSO4·7H2O质量比为10:1,再将混合液置于功率250w,温度20℃的超声波环境中,超声15min,最后进行固液分离、洗涤和干燥过程;②SEM、TEM、XRD、BET、XPS的表征结果表明,铁以无定形氧化铁的形式存在于吸附剂表面,其负载量为0.54%,Fe/γ-Al2O3的BET比表面积与孔容分别为304.3m2/g和0.341cm3/g,均低于γ-Al22O(3320.0m/g,0.356cm3/g);③所制备的Fe/γ-Al2O3在25℃,pH为7左右,对F-的吸附满足Langmuir等温线,对F-的饱和吸附容量为1.65mg/g,高于γ-Al2O3(1.05mg/g),Fe/γ-Al2O3对F-的吸附符合准二级动力学模型,其速率控制步骤包括边界层扩散和内部扩散两个过程;④将除氟后的Fe/γ-Al2O3用1%氢氧化钠浸泡后,将颗粒物取出并置入蒸馏水中,用盐酸调节溶液的pH值至5-8,经过滤、干燥等过程可获得再生吸附剂。再生吸附剂的除氟效果与新制备的Fe/γ-Al2O3相当。在小试范围内,将Fe/γ-Al2O3用于深度处理太阳能电池生产企业含氟废水。研究结果表明,在pH3-9、投加吸附剂40g/L、接触时间24h的条件下进行静态吸附,CF-可从30mg/L降至10mg/L左右;在体积空速为1.7h-1的条件下,动态吸附的穿透时间为3.5h/t。与γ-Al2O3相比,Fe/γ-Al2O3具有更宽的适用pH,更长的穿透时间(是γ-Al2O3的5倍),以及更高的环境效益。