论文部分内容阅读
锂离子电池和钠离子电池所具有的高能量密度、低自放电程度以及无记忆效应等优点使其成为电动汽车和便携式电子装置的能量来源。随着对能量密度和功率密度需求的增长,寻找具有高比容量、高倍率、高循环稳定性的新型电极材料变得至关重要。商用锂离子电池和钠离子电池的负极主要是石墨,石墨的低放电平台(0 V versus Li+/Li)能够扩大全电池的能量密度。然而,石墨的低理论比容量(372 mAh/g)阻碍了石墨在高性能电池开发中的大规模应用。与石墨相比,过渡金属氧化物具有高比容量、高功率密度、环境友好等优点。然而,过渡金属氧化物本身所固有的大体积膨胀、低导电性使其倍率性能和循环稳定性很差。因此,本文将石墨烯纳米卷与过渡金属氧化物复合,同时对过渡金属氧化物本身进行修饰,从而合成了具有高电化学性能的电极材料。具体的研究内容如下:(1)采用水热合成的方法制备超长的二氧化锰纳米纤维,并通过“快速喷雾冷冻”的方法将二氧化锰纳米纤维与氧化石墨烯复合,随后利用水合肼蒸汽将其进行还原,合成了多孔多价态氧化锰@石墨烯纳米卷核壳纳米纤维复合材料,通过控制石墨烯的含量来探索最佳的微观结构。石墨烯纳米卷外壳不仅可以提高电极的导电性,而且可以抑制MnOx纳米纤维在连续的充放电循环中的破碎。混合价态的锰离子的双交换相互作用进一步提高了氧化锰的导电性。同时,MnOx中垂直排列的晶面和内部的介孔结构显著增强了锂离子扩散速率。将该复合材料组装成锂离子电池进行测试,展示出了优异的电化学性能。当电流密度为0.1 A/g时,PMnOx@G电极材料的比容量可达到1072 mAh/g;当电流密度为10 A/g时,PMnOx@G电极材料的比容量可达到419 mAh/g。此外,在2 A/g电流密度下经过500个循环时比容量仍可达到1162 mAh/g。(2)以二氧化锰纳米纤维为模板,硫酸亚锡为锡源,通过氧化还原反应合成了的二氧化锡纳米管,并通过“快速喷雾冷冻”的方法将的二氧化锡纳米管与氧化石墨烯复合,随后将其进行高温煅烧还原,合成了二氧化锡@石墨烯纳米卷核壳纳米管复合材料。石墨烯纳米卷外壳不仅可以提高电极的导电性,而且可以抑制SnO2纳米管在连续的充放电循环中的破碎。同时,SnO2纳米管的中空结构加快了钠离子的传输速率。将该复合材料组装成锂离子电池进行测试,展示出了优异的电化学性能。在电流密度为0.1 A/g时其比容量可达到306 mAh/g,即使在流密度为2 A/g时其比容量仍可达到141 mAh/g。电流密度为2 A/g时,即使在200次循环后SnO2@G电极材料的放电比容量仍高达144.5mAh/g。