论文部分内容阅读
能源危机和环境污染一直困扰人类的生存,从而掀起人类对节能减排的热潮,使得磁场的研究渗透到柴油机领域,因而有了磁化器在柴油机节能减排的应用。目前磁化器结构主要有永磁式和电磁式:永磁式磁化器由永磁铁进行重组,产生的磁场都是非均匀的,试验时一般取磁场的最大值来分析试验结果;电磁式磁化器能产生高频磁场和直流磁场,高频磁场用于管道除垢,但没有应用到柴油机上;直流磁场应用到柴油机上主要是脱硫,并没有研究磁场与节能减排参数关系,产生的直流磁场才17.3mT,磁场值过小,限制了磁场与节能减排关系的研究范围。本文主要是研制了磁强均匀可控的磁化器,并将该磁化器应用于磁化柴油,柴油机最大节油率可达4.17%,NO含量最多减少5.85%。该磁化器可以得到确切大小的磁场,且磁场值均匀、稳定,磁场大小可以自由调节,磁场量程高达300mT,制造成本低。本课题预测了柴油机节能减排的最佳磁化方式,推进了磁化器在柴油机上节能减排的研究。首先,本文从宏观和微观角度阐述了燃油磁化节能减排已有磁化机理,首次采用磁致伸缩理论全面解释了柴油机节能减排效果与磁化三要素(磁强、流速、磁程)的关系,推断燃油磁化前后其表面积的变化,预测了柴油磁化后能耗和烟度等参数的变化,为后续试验结果的分析奠定了基础。其次,首次开发了磁强可控的均匀磁场磁化器,对磁化器的结构设计、磁场计算、材料选取、制造工艺和流程进行了研究,首次提出了磁化器电阻计算的经验公式。设计了磁场可控闭环电路,使得磁场大小精确可调,同时屏蔽了磁化器磁场对电路的干扰。再次,选用0.2T气隙磁场进行对比分析,采用ANSYS软件对气隙磁场大小和磁场分布进行了仿真,利用特斯拉计测量了气隙磁场的大小,研究表明气隙磁场理论值、仿真结果和实际测量值基本一致。最后,搭建了柴油机试验台架,探究了该磁化器节能减排的效果。有效连接并控制柴油机与磁化器、测功机、电子秤、烟度计、排气分析仪等仪器,设计了精确的试验方案,测量磁场与柴油机负荷特性下的油耗、烟度和尾气NO等参数的关系,描绘了磁感应强度与节油率、排烟度、尾气中碳氧化物和氮氧化物的关系图,试验表明:低负荷时,磁化结果比较明显,油耗增多,烟度增大,NO含量最多减少5.85%;中负荷时节油率很明显,达到4.17%,烟度和尾气其他成分效果不明显;高负荷时,磁化技术对油耗、烟度和尾气NO等效果都不明显。同时,分析了柴油磁化时间和柴油磁化后达到燃烧室的时间与节能减排的关系,测量了柴油磁化前后表面张力的变化,结合磁致伸缩理论和表面张力的变化有力地解释了柴油机节能减排的机理,从而预测了柴油机节能减排的最佳磁化方式。