论文部分内容阅读
相干激光雷达在军事领域、环境科学领域以及无人驾驶等领域的应用,使相干激光雷达成为了科研工作者研究的热点。由于人眼安全、传输损耗低、系统结构紧凑、体积小、便于运输等优点,1550 nm窄线宽单频光纤激光器作为相干激光雷达的发射源引起了国内外学者的广泛关注。因此,本文开展了连续及脉冲运转1550 nm单频激光的研究工作。首先,以铒离子的准三能级结构为基础,通过分析铒离子的能级跃迁机制,建立了铒离子准三能级系统的速率方程模型,为掺铒光纤种子光激光器的实验提供了理论依据。对短腔法,饱和吸收体(Saturable Absorber,SA)选模法和多环形腔法等在光纤激光器中获得单频激光的方法进行了详尽的理论介绍,通过对比各个选模方法的优劣,选择了饱和吸收体选模法来获得单频激光。利用Optisystem软件对单纵模掺铒光纤激光器进行仿真。对未加饱和吸收体和加入饱和吸收体两种谐振腔结构进行仿真研究,讨论了增益光纤长度,耦合输出比以及饱和吸收体长度对激光器功率及斜效率的影响。并通过Matlab对饱和吸收体的选模作用进行仿真,得到了饱和吸收体的长度与输出单纵模之间的关系。然后,搭建了单纵模掺铒光纤激光器结构,研究分析了激光器的输出功率,光谱特性,单纵模运转特性以及激光线宽特性,验证了增益光纤的长度以及耦合输出比对激光器输出性能的影响。介绍并对比了三种测量窄线宽激光器中激光线宽的方法,并利用延时的自外差探测法对激光线宽进行测量。获得了输出功率为9mW,线宽为2.1 kHz,中心波长为1550 nm的稳定单频连续激光输出,在一个小时内观察种子光模式稳定度,发现拍频信号的中心频率稳定无跳模现象发生。其次,进行了单频脉冲激光放大的实验研究。研究分析了预放大结构的输出特性,获得了功率为89 mW,线宽为2.8 kHz的1549.75 nm单纵模激光。在以上研究工作的基础上,对脉冲放大结构进行实验研究分析,预放大后的单纵模激光经声光移频器斩波后,获得重频为10 kHz,脉宽为300 ns的脉冲光输出。经过一级掺铒光纤放大,最终在重频为10 kHz时,获得了脉宽为330 ns,峰值功率为1.21W的单频脉冲激光。最后,对环形腔锁频放大结构进行了实验研究。研究分析了种子光结构的输出特性,获得了功率为495 mW,线宽为3.2 kHz的单纵模1549.76 nm的激光。测量分析了环形腔放大级的输出特性,在未注入种子光时,获得了功率为476 mW,光束质量为2.66的1550.25 nm的激光,此时激光器处于多纵模运转状态。注入种子光时,获得了功率为468 mW,线宽为3.5 kHz的单纵模1549.85 nm激光输出。