【摘 要】
:
ZnO作为典型的金属氧化物半导体在气敏传感领域具有广泛的应用前景,具有制备简单、成本低和稳定性好等优点。但是随着人们对生产和生活中挥发性有机化合物气体(VOCs)检测要求的不断提升,单一ZnO气敏传感器的局限性也日益凸显,面临检出限高、选择性差、最佳工作温度高等诸多挑战。本文以ZnO气敏材料为主要研究对象,首先通过构筑分级微球对其形貌结构进行优化,进一步通过In掺杂、构建ZnO/Zn2Sn O4核
论文部分内容阅读
ZnO作为典型的金属氧化物半导体在气敏传感领域具有广泛的应用前景,具有制备简单、成本低和稳定性好等优点。但是随着人们对生产和生活中挥发性有机化合物气体(VOCs)检测要求的不断提升,单一ZnO气敏传感器的局限性也日益凸显,面临检出限高、选择性差、最佳工作温度高等诸多挑战。本文以ZnO气敏材料为主要研究对象,首先通过构筑分级微球对其形貌结构进行优化,进一步通过In掺杂、构建ZnO/Zn2Sn O4核壳结构和金纳米粒子修饰等手段对ZnO分级微球进行结构优化和表界面调控,详细讨论了ZnO基复合分级微球的结构、组分与器件气敏性能之间的关系。具体研究内容如下:1.通过添加表面活性剂对水热生长ZnO分级微球的形貌结构进行调控,研究表面活性剂的添加量与ZnO分级微球的形貌结构和气敏性能之间的关系。发现与ZnO纳米棒相比,ZnO分级微球的气敏性能显著提高,在工作温度为180℃时对100ppm甲醛的响应度由10.3提高至26.0。进一步制备了In掺杂的ZnO分级微球,气敏性能测试表明,当In的掺杂摩尔比为4%时,样品具有最佳的甲醛气敏性能,在工作温度为120℃时,对100 ppm甲醛的响应度为340.0。In掺杂ZnO分级微球气敏性能的提升不仅归功于其微纳分级结构,In掺杂引入的表面缺陷导致的氧空位增加也是气敏性能提升的关键原因。2.利用液相沉积法对ZnO分级微球进行Zn2Sn O4壳层包覆,制备了ZnO/Zn2Sn O4分级核壳微球,并研究了反应液浓度与分级核壳微球的形貌结构和气敏性能之间的关系。研究发现,与单一ZnO分级微球相比,经过适量的Zn2Sn O4壳层包覆,ZnO/Zn2Sn O4分级核壳微球对100 ppm异丙醇气体的响应度由29.4提升至113.5,同时具有更快的响应恢复速度,最低检测限为2 ppm。ZnO和Zn2Sn O4两种材料的协同效应以及异质结界面势垒的形成共同提升了分级核壳微球的气敏性能。3.利用Au纳米颗粒对ZnO分级微球进行修饰改性,研究了Au纳米颗粒的负载量与气敏性能之间的关系。研究结果表明,未负载Au纳米颗粒的ZnO分级微球对100 ppm丙酮的响应度仅为19.6,而经过适量Au纳米颗粒修饰后,响应度提升了约34倍,达到670.3,响应和恢复时间也大幅降低,具有良好的丙酮选择性。Au与ZnO之间形成肖特基势垒导致的“电子增感”效应和贵金属Au的“化学增感”效应是气敏性能提升的关键因素。
其他文献
磷灰石型硅酸镧固体氧化物电解质(La9.33Si6O26,LSO)在中低温下具有较高的离子电导率以及较宽的氧分压,因此,LSO在燃料电池的应用中具有较好的应用前景。而La位和Si位的共掺杂是目前对磷灰石型硅酸镧电解质进行掺杂改性研究的重要途径之一。本文采用尿素-硝酸盐燃烧法,选取Al为Si位掺杂元素,Nd、Pr和Sm为La位掺杂元素,以氧化镧为La源,正硅酸四乙酯为Si源,尿素为燃烧剂,在600℃
锂离子电池(LIB)是便携式电子设备和电动汽车中使用最广泛的储能装置。高镍Li Ni0.8Co0.1Mn0.1O2(NCM811)正极材料由于其高比容量(~200 m A h g-1),作为高能量密度锂离子电池的候选材料而备受关注。然而,由于Li+/Ni2+阳离子在晶体结构中的混排,过渡金属的溶解以及NCM811活性材料和电解液之间不利的界面副反应等问题,在循环过程中会导致快速容量衰减。在长期循环
水系锌离子电池因其具有高安全性、低成本和良好的电化学性能等优点,日益受到人们的关注。但是,由于Zn2+的高极化特性,以及水系电解液能够稳定存在的电位窗口较窄,对于锌离子电池而言,开发合适的正极材料至关重要。由于聚苯胺水凝胶具有典型的纳米多孔结构、三维互通的导电框架和固有的赝电容特性,可以赋予电极材料良好的电子/离子传导性、结构稳定性和电化学活性,故本论文开展了基于聚苯胺水凝胶复合体系的锌离子电池正
热电材料可以通过塞贝克效应将热能直接转换为电能。相比于无机热电材料,有机热电材料具有机械柔性、重量轻、无毒等优势,在较低温度下即可达到最优热电性能,在智能穿戴等领域有很好的发展前景。通过掺杂高迁移率窄带隙给受体(D-A)共轭聚合物是开发高性能有机热电材料的一种有效途径。P型聚合物材料掺杂时失去电子被氧化,高的最高占据轨道(HOMO)有利于提高掺杂效率,与掺杂剂良好的混溶性则为后续加工和进一步优化性
本文以四种不同粒径的碳化硅粉料F1(D50=17.07μm)、F2(D50=7.8μm)、F3(D50=1.72μm)和F4(D50=0.68μm)为主原料,以C/Si O2为添加助剂,按设计配方进行称量、混合和干压成型,成型坯体在氩气气氛、高温条件下(2150℃~2350℃)进行烧成,成功制备了一系列微米级孔径的碳化硅多孔陶瓷。重点开展了F2与F3细粉质量分数、烧结温度和保温时间等条件变化对碳化
现代化、工业化进程的加快,加大了对石油资源的大规模开发力度。与此同时,越来越多的漏油事故对我们的海洋生态系统造成了严重的影响。石油泄漏和含油废水的排放带来了一系列的水污染和环境问题。具有高选择性和高分离效率的特殊浸润性分离材料被广泛应用在石油吸附和油水分离领域。本论文选用孔隙率为99.2%的密胺海绵作为基体材料,通过表面改性,开发了具有疏水性和亲水性的两大类改性海绵。采用红外光谱和透射电镜进行结构
熔融沉积成型(FDM)因安全环保、材料来源广泛、高集成性、制品形状无限制性和低成本等优点而成为3D打印中的重要分支,受到广泛关注。成型材料是制约3D打印技术发展与应用的瓶颈,尼龙12(PA12)是一种重要的3D打印材料,但其主要应用于选择性激光烧结(SLS),将PA12用于FDM的研究并不成熟,因此本研究以从SLS中回收的PA12粉末为基材,以多壁碳纳米管(MWCNT)为增强剂和功能化剂旨在开发适
在磷矿资源的开采过程中,产生了大量磷尾矿。大量堆存的磷尾矿给生态环境带来了很大的压力。磷尾矿问题是“三磷问题”中重要的一环,提高磷尾矿的资源化利用效率已经迫在眉睫。高镁磷尾矿是磷尾矿中的一种,对于高镁磷尾矿的资源化利用,很多的研究都采用了煅烧的方法,但是这些研究所做的煅烧处理比较单一,温度等煅烧要素的选取没有一个标准。此外不同矿区的磷尾矿各成分含量大相径庭,导致这些研究不具有普适性。为了给磷尾矿的
金刚石作为第四代半导体材料,具有高载流子迁移率、高热导率、低介电系数、宽禁带、高硬度等特点,在光学、电学、力学等领域有着重要应用。高纯度的金刚石在常温下具有很高的电阻率,为了实现金刚石的半导体应用,必须引入杂质使其具有半导体特性。目前,国外已经开发出通过原子级结合构成的复合型金刚石半导体,可以为通信、雷达、光电探测器、传感器等领域提供更高功率、更高频率、更小、更节能的电子器件。基于课题组在制备同质
由于人口增长、水污染和能源短缺的问题日益严重,人类面临着严重的淡水水资源匮乏的问题。近年来,太阳能驱动的界面水蒸发技术受到了广泛的研究。其中,理想的界面太阳能水蒸发材料对于高效的光热水蒸发起着重要的作用。在全太阳光谱内有着高吸光性能的光热转换材料,主要包括四类:金属纳米粒子,半导体材料,碳基纳米材料和聚合物基黑色纳米材料。在碳基纳米材料中,石墨烯及其衍生物有着极高的宽带光吸收能力,并且其独特的结构