【摘 要】
:
超对称在引力理论、超重力理论、超弦理论中具有重要的应用.超对称可积系统在数学物理中占有举足轻重的地位,许多重要的可积系统都被推广到超对称领域.海森堡铁磁链模型是一个重要的可积系统,该模型描述了各向同性铁磁体磁化矢量的运动.在研究可积系统模型的过程中,海森堡铁磁链模型是其中研究最多的一个.海森堡铁磁链模型广泛应用在非平衡磁学、共形场论和二维(2D)重力理论等方面.超对称海森堡铁磁链模型是海森堡铁磁链
【基金项目】
:
中国国家自然科学基金会(Grant Nos.11965014 and 12061051);
论文部分内容阅读
超对称在引力理论、超重力理论、超弦理论中具有重要的应用.超对称可积系统在数学物理中占有举足轻重的地位,许多重要的可积系统都被推广到超对称领域.海森堡铁磁链模型是一个重要的可积系统,该模型描述了各向同性铁磁体磁化矢量的运动.在研究可积系统模型的过程中,海森堡铁磁链模型是其中研究最多的一个.海森堡铁磁链模型广泛应用在非平衡磁学、共形场论和二维(2D)重力理论等方面.超对称海森堡铁磁链模型是海森堡铁磁链模型的超对称推广形式.超对称海森堡铁磁链模型规范等价且几何等价于超对称非线性薛定谔方程.众多学者研究了推广的超对称海森堡铁磁链模型,包括高阶模型、非均匀模型和高维模型.本文的研究对象主要是五阶非均匀超对称海森堡铁磁链模型.首先,利用Lax表示所满足的可积性条件,本文构造了五阶非均匀超对称海森堡铁磁链模型,并研究其超对称可积性质和结构.进一步,利用规范变换,在两种不同的平方约束下构造了相应的规范等价方程,分别为五阶非均匀超对称型和费米型非线性薛定谔方程.此外,本文还研究了这些超对称型和费米型非线性薛定谔方程的B(?)cklund变换,从而得到了相应的非平凡特解.
其他文献
本硕士学位论文利用辛叠加方法研究了双参数弹性地基上四边自由和四边固支正交各向异性矩形薄板的自由振动问题,导出了这类薄板自由振动的Hamilton正则方程.针对双参数弹性地基上四边自由正交各向异性矩形薄板的自由振动问题,通过分析边界条件将其分解为对边滑支条件下矩形基础板的两个子振动问题,再利用相应Hamilton系统的分离变量法分别求出这两个子振动问题的基本解,这两个基本解经过叠加得到原振动问题的解
本篇文章主要研究了两类问题:一、基于三阶正则微分算子自伴边界条件标准型的分类,研究了具有自伴边界条件标准型的正则三阶微分算子本征值的依赖性问题,证明了该问题的本征值连续平滑地依赖于区间端点、边界条件标准型的所有参数以及方程的某些系数,进一步得到本征值的微分表达式;二、基于偶数阶边值问题的有限谱以及简单形式三阶边值问题有限谱的研究方法,研究了一类系数中含有复数的三阶边值问题的有限谱,并且得出此问题至
流体力学方程是偏微分方程中一个重要的研究对象,常运用于航空航天、气象学、生物学等领域.尤其,物理真空自由边值问题是偏微分方程研究领域的一个难点问题.因为在这种条件下,流体的运动区域随着时间沿质点路径发生变化,并且描述流体运动的系统在自由边界处发生退化.本文主要研究圆柱对称带阻尼项的Euler方程及其相关模型(包括可压Euler方程和可压Euler-Poisson方程)光滑解真空自由边界问题的局部适
本文分别对一维和二维非线性Schr(?)dinger方程的初边值问题构造了时间两层网格的四阶紧致有限差分模型.该算法先用迭代法求解时间粗网格上的非线性差分模型,并用Lagrange线性插值公式获取较粗糙的细网格数值解.再以粗糙数值解为初值,线性化原差分模型,并在细网格上求解线性化模型得到数值解.利用离散能量分析法证明了两层网格有限差分格式的L2范数O(τ~2F+τ~4C+h~4)阶误差估计,其中τ
本文研究了复辛空间中完全Lagrangian子空间的构造以及耗散子空间的构造问题.对称算子的自伴扩张,耗散扩张与由算子定义域构造的复辛空间的完全Lagrangian子空间,耗散子空间之间存在一一对应关系,所以研究复辛空间中完全Lagrangian子空间以及耗散子空间的构造与研究对称微分算子的自伴扩张以及耗散扩张具有同样的意义.首先,本文研究了复辛空间中完全Lagrangian子空间的构造,根据La
<正>1项目概况中国福利会国际和平妇幼保健院(以下简称“国妇婴奉贤院区”)位于奉贤新城,项目用地面积为66 666.67 m~2,总建筑面积约为100 000 m~2,设计床位数为500张。项目的主要建筑为一座11层高的、集临床诊疗和科学教学功能于一体的综合楼和一座3层高的科教楼。项目建设发展的远景定位为“建设国内一流医院,打造全国科研标杆”。项目将医院打造成一座具有实验性、示范性、
本文主要研究了 Banach*-代数(包括C*-代数)乘积空间下的Hamilton算子形式,这为今后利用代数技巧深入研究Hamilton算子的谱理论提供了可能.文中先给出了广义辛单位算子和有界Hamilton算子的一般定义,并基于两类具有特殊结构的广义辛单位算子导出了 Banach*-代数框架下两类Hamilton算子和反Hamilton算子的形式,最后给出了具体代数框架下的Hamilton算子实
线性关系的广义逆在关系理论研究和实际应用中有着非常重要的作用.Hilbert空间中有界线性算子的Bott-Duffin逆的存在性,以及Bott-Duffin逆的矩阵表示形式已有结论,但未见线性关系的Bott-Duffin逆的相关研究.本文首先引入了 Banach空间上线性关系的Bott-Duffin逆的概念,并讨论了线性关系A,投影算子PM.N以及线性关系A的Bott-Duffin逆AM,N-1之
转录因子p53是肿瘤抑制因子,是基因组的守护者。它位于基因调控信号网络的中心,在细胞生长、衰老、DNA修复和程序性细胞死亡中起着重要作用。p53也是一种重要的肿瘤抑制因子,其动力学具有重要的生理意义。大量实验表明,在p53网络中,时滞是必不可少的。为了探究时滞对于p53中心网络动力学的影响,我们构建了一个具有时滞的p53网络。首先,通过理论分析,我们证明时滞τ存在一个阈值。当时滞τ小于阈值时,系统
处处可见的图像现在已经离不开我们的日常生活.而彩色图像的应用则更为广泛,但是在得到图像时无意就会受到外界的干扰,比如噪声和模糊,这就使得图像恢复尤为重要.彩色图像恢复是彩色图像处理中的重要任务之一.而对于图像恢复,建立有效的正则化方法是一项重要的内容.不同于之前的在RGB空间建立正则项,文章是在HSV空间建立全变差模型,而这种全变差模型可以通过彩色图像在四元数框架中的表示来研究,然后在这个模型的基