【摘 要】
:
自主水下航行器(Autonomous Underwater Vehicle,AUV),具有活动范围较广、灵活性较好、智能化操作等优点,逐步成为人类探索海洋的重要工具。利用磁耦合谐振无线电能传输技术,
论文部分内容阅读
自主水下航行器(Autonomous Underwater Vehicle,AUV),具有活动范围较广、灵活性较好、智能化操作等优点,逐步成为人类探索海洋的重要工具。利用磁耦合谐振无线电能传输技术,对AUV进行无线充电,可以提高AUV的工作效率和隐蔽性。在海水环境中,海水的导电性使电能在传输过程中出现涡流损耗,降低传输效率;海流冲击使航行器与基站发生横滚和相对轴向偏移,导致耦合线圈互感变化,影响电能传输的稳定性。针对海洋环境中需解决的关键技术问题,本文主要研究内容如下:1.提出三线圈无线电能传输结构,两个发射线圈与接收线圈同尺寸,且在接收线圈两端对称放置,降低海水的涡流损耗。建立三线圈系统空间电场解析式及涡流损耗等效阻抗计算方法,对比两线圈模型,分析得出在海水中三线圈结构可使涡流损耗减小。2.针对AUV在海洋环境中充电时,海流冲击对无线电能传输性能的影响,提出同心螺旋三线圈结构,即两发射线圈套在基站回收笼外面,直径大于接收线圈,接收线圈固定在AUV上,三个线圈的轴心与AUV轴向一致。建立同心螺旋三线圈结构合成电场离散计算模型,仿真和实验证明合成电场离散计算方法的正确性,以及同心螺旋三线圈系统具有抗轴向扰动的能力。3.研究三线圈结构的补偿电路拓扑结构,对两个发射线圈并联时的共享补偿电容电路、单独补偿电容电路及两个发射线圈串联时的补偿电路进行分析。仿真和实验结果表明,在海洋环境下,三线圈结构和传统二线圈结构在传输相同功率的条件下,三线圈传输效率可以提高10%左右,以及当两个发射线圈并联时共享补偿电容拓扑结构对互感变化具有更强的鲁棒性。研究结果表明,三线圈无线电能传输系统可以减少涡流损耗,具有较强的抗海流冲击能力,在海洋环境下具有很好的应用前景。
其他文献
复合材料已成为国民经济领域不可缺少的关键基础材料,从微观角度研究复合材料的性能机理具有重要的指导意义。聚乙烯的化学结构性能较为稳定,其生产和制备工艺也较为成熟,已成为目前应用最广泛的高分子材料。石墨烯具有较大的比表面积和卓越的力学性能,将二维石墨烯作为填料加入到聚乙烯基体中构成石墨烯/聚乙烯复合材料,诱导聚乙烯在其表面结晶,可以改善聚乙烯基体的力学性能。本文利用分子动力学模拟,建立了不同聚乙烯链长
改进Ibarra-Medina-Krawinkler(IMK)恢复力模型能较好地反映钢筋混凝土构件退化行为的滞回特征,对结构倒塌的模拟具有很好的效果,对倒塌安全性的评估,尤其是对于在相对较小变形下就开始退化的现有老建筑具有重要的意义。本文基于Open Sees软件,运用改进IMK模型,对柱构件及整体框架结构进行了在拟静力加载下的建模分析,并与广泛运用于数值模拟的纤维模型进行了分析对比,对改进IMK
ZSM-5分子筛因其具有独特的交叉孔道结构、适中的酸性、良好的热稳定性和水热稳定性以及较强的选择吸附性能,因此成为低碳烃芳构化技术的标志性分子筛。在有机模板作为结构导向剂条件下合成ZSM-5分子筛的传统水热法被认为是一种消耗资源、消耗能源和污染环境的方法,这将对其作为催化剂的使用产生不利影响。因此,寻找另一种不使用有机模板合成ZSM-5的高效方法是有益的。采用无模板法合成分子筛摆脱了传统模板合成法
与相应块状材料相比,纳米材料有许多特殊的性质,这种特殊的性质多涉及到纳米材料的反应,且与纳米材料的粒度和形貌密不可分。而目前关于纳米反应动力学参数对纳米颗粒粒度和形貌的依赖性还不完全清楚,严重制约了纳米反应动力学理论的发展和应用。本文结合理论与实验,研究了纳米材料的粒度和形貌对其反应动力学参数和表面热力学性质的影响。理论上,根据过渡态理论,首先推导出纳米反应的表观活化能和指前因子与粒度和形貌的关系
碳纤维增强树脂基复合材料作为一种先进复合材料,由于其优异的性能受到了广泛的关注,复合材料在飞行器上的用量已经成为评价飞行器先进性的重要指标之一。复合材料固化作为复合材料零件制造过程中重要的一环,对产品质量起决定性作用。相对于传统热压罐固化技术而言,微波固化技术具有加热速度快、加热能耗低等优势。然而,复合材料微波固化过程中存在的面内温度不均匀问题已经成为阻碍该技术实现工业化应用的重要原因之一。本文针
大型结构的抗震性能是土木工程领域关注的重点研究方向,特别是基于不同类型阻尼器的减震体系一直是抗震领域研究热点之一。传统的结构减震体系仅考虑阻尼系数这一单参数变化的影响,而随着三元减振体系的发展,能同时考虑质量单元、阻尼单元和刚度单元的三元减振技术获得了迅速发展。电涡流阻尼单元联合具有质量放大效应的惯质单元形成二元减振体系,在此基础上,再耦合弹簧单元形成的三元减振体系具有调谐作用,大大提高了对结构振
由于沸石分子筛具有规则孔结构、高比表面积、强酸性和良好水热稳定性等优点,所以被广泛应用在吸附、分离和催化等传统领域。但是,由于微孔沸石的孔径接近于许多涉及到的烃分
飞机大型部件测量时,由于被测部件尺寸较大或者结构复杂,测量设备在使用过程中需要转站才能实现对盲区的测量。而现有的转站方式多采用人工搬运,不仅存在劳动强度大、安全性差等问题,而且易出现测量视野很窄的情况,使得前期规划结果失败。通过移动机器人搭载测量设备,结合自主导航技术,完成飞机大型部件测量工作,能够有效提高测量效率与安全性。本文着重研究了移动机器人导航与定位的相关问题,主要研究内容如下:(1)针对
随着航空构件逐渐向轻量化、集成化、多功能化方向发展,传统的轻质金属材料及结构已无法完全满足其性能需求。点阵结构作为一种极具潜力的功能性材料,通过将其填充于航空零部件内部,并借助增材制造工艺将其制造出来,能在实现结构轻量化设计的同时,为其带来新的功能特性。因此,对这种新型结构相关的轻量化技术开展研究具有重要的工程意义。本文将对点阵结构的航空构件轻量化设计及优化技术展开研究,主要研究工作如下:(1)针
纳米Bi_2O_3是一种很有应用前景的光催化剂,而粒径和形貌对其吸附和光催化性质有很大的影响。目前,纳米Bi_2O_3的粒径和形貌对其吸附和光催化降解盐基品红的规律还不清楚。本文从理论和实验两方面探讨了纳米颗粒的粒度和形貌对吸附和光催化性能的影响。在理论方面,通过球形和线形纳米材料的吸附动力学和热力学理论,分别研究了粒度对两种形貌纳米材料的吸附动力学参数、标准平衡常数和热力学性质的影响规律和机理;