论文部分内容阅读
随着我国高速铁路建设的迅猛发展和列车运营速度的不断提高,高速列车的运行安全性和噪声污染问题日益受到人们的关注。为了降低噪声对周围环境的影响,声屏障技术在国内外高速铁路工程领域得到了广泛的应用。在横风环境中,声屏障客观上起到了挡风墙的作用。安装声屏障后,对列车起到了一定的横风保护作用。同时,列车周围流场结构发生改变,列车的气动性能和动力学性能都将受到声屏障的影响,声屏障参数设置合理与否将影响到高速列车行车安全性。因此有必要深入探讨横风中声屏障对高速列车气动性能和动力学性能的影响,以期为高速铁路声屏障的合理设置及设有声屏障区段上列车的安全运营提供参考。论文介绍了国内外高速铁路建设发展概况及高速铁路声屏障的应用情况。在总结了国内外横风中列车运行安全性及高速铁路声屏障相关研究工作的基础上,指出了现阶段针对横风中声屏障对列车运行安全性研究的不足之处。基于空气动力学理论建立了横风中高速列车运行在复线路堤及复线高架桥区段时的三维空气动力学模型,并针对不同高度的声屏障工况分别建模。基于多体动力学理论建立了对应的横风中高速列车系统动力学模型。分析了横风中列车运行在复线路堤及复线高架桥区段时,有、无声屏障对列车周围流场结构、气动性能、动力学性能和运行安全性的影响。针对设有插板式声屏障的路堤区段和高架桥区段,分别研究了横风环境中,列车气动性能和动力学性能随声屏障高度的变化规律。数值模拟结果表明,加装声屏障后,由于列车与其两侧的声屏障之间形成了半封闭的空间,列车两侧都出现了明显的旋涡,形成局部负压区域。列车与迎风侧声屏障之间形成的负压区域可能导致列车受到逆横风方向的作用力,使得列车有向逆横风方向倾覆的倾向。列车运行在不同工况时,列车两侧形成了位置、大小不一的旋涡。在路堤及高架桥区段,车辆受到的气动力随声屏障高度的增加有一定的规律性,其中头车气动性能受声屏障高度变化的影响最大,声屏障高度较低时,随声屏障高度的增加,头车侧力和侧滚力矩改善明显。在路堤及高架桥区段,声屏障高度对头车的运行安全性指标有明显影响。复线路堤区段,声屏障高度较低时,列车安全性指标随高度增大而减小,但声屏障达到一定高度后安全性指标又逐渐增大。复线高架桥区段,列车安全性指标随高度增加逐渐得到改善。列车运行在复线路堤段上风线时,安全性好于下风线时;列车运行在复线高架桥段上、下风线时安全性指标差别不大。随横风速度和行车速度的增大,列车运行安全性逐渐变差。不宜在横风较大的路堤区段架设3m以上高度的声屏障;高架桥区段声屏障高度则不宜超过3.5m。