【摘 要】
:
本文研究了在复合铁磁材料中,带快速震荡系数多尺度Landau-Lifshitz-Gilbert方程的均匀化.对于多尺度方程,利用渐近展开推导其均匀化方程.之后,在数学上用双尺度收敛的方法来严格证明.而对于其均匀化方程,我们在扰动系数A0(x)以及K0(x)的情况下,得出了稳定性估计,这里x=(x1,x2,x3)是空间变量.最后,一维空间例子用来验证收敛性以及mε和m0的L2范数误差是O(ε),三维
论文部分内容阅读
本文研究了在复合铁磁材料中,带快速震荡系数多尺度Landau-Lifshitz-Gilbert方程的均匀化.对于多尺度方程,利用渐近展开推导其均匀化方程.之后,在数学上用双尺度收敛的方法来严格证明.而对于其均匀化方程,我们在扰动系数A0(x)以及K0(x)的情况下,得出了稳定性估计,这里x=(x1,x2,x3)是空间变量.最后,一维空间例子用来验证收敛性以及mε和m0的L2范数误差是O(ε),三维空间的例子则用来检测稳定性分析的结果.在数值上,都在高斯-赛德尔投影法(GSPM)[1][2]的稍加改动后求解方程.
其他文献
研究背景:最新统计数据显示,乳腺癌取代肺癌,已经成为全球第一大癌症,严重危害着人们的生命健康。光热治疗(PTT)是一种高效且无创的疗法除了杀死肿瘤细胞之外,光热效应还可以产生可被检测的超声波信号,称为光声成像(PAI)。光声成像是一种新兴的成像方式,结合了超声的空间分辨率和光学的高对比度,同时适用于深层组织成像,其分辨率远高于纯光学成像。在目前发展的许多种材料体系中,光热剂可同时用于PTT和PAI
设f:M→M为有限维光滑黎曼流形M上的C1+α微分同胚,Λ?M为f的局部极大紧不变集。本文研究在完全非一致双曲系统中,一般的超可加函数列在不变集Λ上的拓扑压可以被其双曲子集上的拓扑压逼近。然后通过研究鞍点压找到一类特殊的次可加函数列,也有上述的拓扑压逼近。根据公理A系统中拓扑熵与周期点的关系,以及周期点关于最大熵测度的分布,我们证明了局部极大双曲集上H?lder连续函数和一类特殊次可加函数列的周期
Simmons在1982年引入了分裂认证码,Ogata等人于2006年引入分裂平衡不完全区组设计(简记分裂(v,u × c,1)-BIBD),用以构作2-阶最优c-分裂认证码.最近,Paterson和Stinson证明了一类认证码与有鲁棒性的(2,2)-门限方案等价,并运用均匀分裂(v,u × c,1)-BIBD来构作这类具有完备保密性、u个等概率信源、v个消息、最优密钥攻击成功概率为(1/cu)
数学课堂是师生进行数学教与学的主要场所,课堂对话反映教学的发生发展过程,是数学知识与数学思维的重要显性载体之一.受传统教学模式的影响,数学课堂中,尤其在新手教师的课堂中呈现出明显的“讲授式”教学特点,缺少师生之间对数学知识的探讨性对话.因此,研究数学课堂中优秀教师与新手教师师生对话的异同具有重要的实践意义.本研究基于IRF理论,将数学课堂作为可视化窗口,通过放大与缩小高中数学课堂的师生对话,从对话
纳滤膜能够实现二价和一价盐离子、盐离子和小分子有机物的分离,是化工、电池、生物制药、医疗等行业/领域中的核心材料之一。评价纳滤膜性能的重要指标是水通量和截盐性能。随着纳滤膜的应用发展,薄膜复合纳滤(TFCNF)膜以其独特的结构和良好的分离性能在纳滤膜中占据重要地位。虽然近年来薄膜复合纳滤膜发展迅速,但仍面临着通量和截留率之间的此消彼长现象(“trade-off”效应)。由于薄膜复合纳滤膜是由多孔支
从Hilbert开始,代数簇对应的齐次理想的自由分解一直是许多数学家感兴趣的问题,特别是D.Eisenbud[1]等人对平面上点的合冲给出了一些相关性质,并对平面上4个点以及5个点做了细致的研究,本文主要在前人的基础上,对平面上点的合冲问题做了如下两个方面的工作:首先,我们分类了平面上6,7,8个点的合冲,X是在射影平面P2上的有限个不同的点的集合,S=K[x,y,z]是射影平面P2上的齐次坐标环
近年来,通过神经网络求解偏微分方程引起广大的注意,尤其是高维情形.方程的解由一个网络表示,参数是通过最小化相关的损失函数获得.通常使用以下两种模型:一种是基于变分.另一种是基于残差.神经网络中对边界条件的处理与经典方法不同,通用策略是使用罚项,但这会导致模型误差,本工作使用两种代表性方法:Deep Galerkin方法(DGM)和Deep Ritz方法(DRM)使用罚项对不同边界条件的椭圆问题进行
最近,由于二维钙钛矿光电器件的高稳定性和低维钙钛矿较为容易的相变特征吸引了化学家的广泛关注。有机-无机杂化钙钛矿具有丰富的结构类型,可以通过改变有机胺阳离子的体积大小,来调控无机阴离子的维度和连接方式,也可以通过调整中心金属离子的元素类型及卤素阴离子的种类,改变材料的稳定性以及光电性质。然而,对于钙钛矿材料中的混合有机胺阳离子体系还有待深入研究,特别是含硫阳离子卤化物钙钛矿材料的研究十分有限,是值
设S=k[x1,…,xn]是域k上以x1,…,xn为变量的多项式环,M为一个有限生成的分次S-模.模M的投射维数表示M的极小分次自由预解的长度,M的正则度刻画了它的极小分次自由预解中合冲模的复杂程度,而M的深度则反映M距离Cohen-Macaulay模的远近程度,这些量一直是交换代数和代数几何方向的学者们关注的问题.由于无平方的单项式理想可以看成超图或图的边理想,从而无平方的单项式理想,特别是二次
离子通道是一种特殊的跨膜蛋白质,其作为一种介质传导离子流过细胞中的脂质双分子层,是生物体中电活动的重要基础.其中,门控特性是离子通道一个极其重要的性质.因此,研究离子通道门控性具有重要的意义.本研究采用多种方法对离子通道的门控性进行数学建模和计算模拟.首先,文章从郎之万方程、随机福克-普朗克方程以及广义福克-普朗克方程组三种不同角度计算模拟了 Na+在门控离子通道运动的平均首达时间(简记为MFPT