【摘 要】
:
反应扩散方程在实际当中有着广泛的应用,例如地下水流问题、生化模型问题、环境污染问题以及油藏的合理开采等等。关于它的数值方法的研究,科学家们在这方面做了大量的工作。Li Wu和陈艳萍等学者针对具有较小扩散系数半线性反应扩散方程提出了几种扩张混合有限元两层网格算法。两层网格算法的基本思想来自于许进超教授早年关于标准有限元两层网格算法的研究工作,主要利用牛顿迭代对非线性代数系统进行线性化,并利用校正技巧
论文部分内容阅读
反应扩散方程在实际当中有着广泛的应用,例如地下水流问题、生化模型问题、环境污染问题以及油藏的合理开采等等。关于它的数值方法的研究,科学家们在这方面做了大量的工作。Li Wu和陈艳萍等学者针对具有较小扩散系数半线性反应扩散方程提出了几种扩张混合有限元两层网格算法。两层网格算法的基本思想来自于许进超教授早年关于标准有限元两层网格算法的研究工作,主要利用牛顿迭代对非线性代数系统进行线性化,并利用校正技巧进一步提高精度。在本文中,我们在Wu和陈艳萍教授提出的两层网格方法的基础上,对二维半线性反应扩散方程用扩张混合有限元离散,通过运用插值后处理技术得到一高效两层网格方法。首先,在粗网格上求解用扩张有限元方法离散后的非线性方程组;然后,对粗网格上的解进行后处理;最后,在细网格上求解用牛顿迭代线性化得到的线性方程组。在收敛性的分析过程中,我们用到了插值后处理算子的性质,并利用了混合有限元的超收敛性质。理论结果表明,运用该算法来解反应扩散方程的扩张混合有限元离散方程组时,粗网格可以进一步粗化,从而提高计算效率,且不会影响其精度。
其他文献
众所周知,非线性Schr(o|¨)dinger方程在高能物理、量子力学,非线性媒体中的激光束扫描,以及浓缩问题等许多方面都有广泛的应用,但其数值求解较为困难。本文研究了具有孤波解的非线性Schr(o|¨)dinger方程的有限差分解法。针对所考虑的模型问题,我们基于降阶一松弛(relaxation)思想,构造出了一种两层线性有限差分格式,其截断误差为O(h~2+τ~2),这里τ和h分别为时空步长。
在当前复杂多变的教育环境中,高校音乐课程教学得到了诸多方面的关注。音乐专业作为艺术性教学课程,在培养学生性情、陶冶学生情操、提高学生艺术修养等方面具有积极的促进作用。特别是在高校声乐教学过程中,教师在声乐理论知识与实践技能的结合下,能有效增强学生的民族文化意识培养、民族感知能力,促使高校学生将音乐学习与德育教育有机结合,推进高校思政教学创新与改革,全面增强高校学生的音乐课程思政教学素养,使高校学生
2020年,疫情、居家、隔离成为物业服务企业服务品质与数字化能力的一场大考。在这场前所未遇的"战"疫中,科技的应用可以说是大放异彩,智慧管理成为助力防护、解决痛点的重要手段。高效的智慧应用不仅提高了防疫效率,还提升了人们对物业服务价值的感知与业主粘性,激活了社区增值服务需求,为物业管理行业带来新的发展机遇。2020年10月30日,国家发展改革委员会等14个部门联合印发《近期扩内需促消费的工作
Rayleigh-Taylor不稳定现象是ICF(InertialConfinementFusion)应用中一个很基础但很重要的问题。它在天体物理、海洋混合层、地质、爆炸等众多领域中都有着重要的作用和意义。近些年来,国内外的许多学者对Rayleigh-Taylor不稳定性现象做了一系列的研究和数值模拟,采用多种数值方法,并取得了许多重要的结果。本文在一些近期文献的基础上对Rayleigh-Tayl
核仁是真核生物核糖体RNA(rRNA)合成、加工和核糖体亚单位装配的场所,这一亚核空间在成簇排列的串联重复rDNA基因周围形成。在模式生物裂殖酵母(fission yeast,Schizosaccharomyces pombe)基因组中,100-200拷贝的rDNA基因分布在Ⅲ号染色体左右两端的末端附近。rDNA区的完整性对于细胞生长和存活是至关重要的。理论上rDNA作为一种长重复序列,相当不稳定
瀑布型多重网格方法自Bornemann提出以来就因其运算格式简单而获得了空前的发展。继瀑布型多重网格方法之后,许多学者对其做了大量的研究工作。其中石钟慈等人提出的经济的瀑布型多重网格方法(ECMG)大大地减小了瀑布型多重网格方法的计算工作量,同时保证瀑布型多重网格方法解的精度。该方法的最大特点就是按照下面的公式在每层上进行光滑迭代。在理论上不论参数m,m0选择的如何,瀑布型多重网格方法都是收敛的,
二阶常微分方程初值问题在科学与工程的许多领域中出现,如天体力学、量子力学、理论物理与化学等,它通常具有周期解或振荡解,这给数值求解带来了困难。因此,近年来,二阶常微分方程数值方法的研究备受人们的关注,并取得了大量的研究成果。Runge-Kutta-Nystr(o|¨)m方法是求解二阶常微分方程的常用的数值方法。本文主要考虑对角隐式Runge-Kutta-Nystr(o|¨)m方法,这类方法对于求解
在本实验中,来自酿酒酵母HS1185的胞外β—1,3—葡聚糖基因被插入TA克隆载体pMD-18中,并被转入大肠杆菌JM109中。重组质粒命名为pMDT-18-GLU。通过Xho I和Nco I双酶切质粒pMDT-18-GLU获得的β—1,3—葡聚糖基因片段插入pET22b(+)的Xho I和Nco I酶切位点。此重组质粒命名为pET22b/GLU。质粒pET22b-GLU被转入大肠杆菌BL21(D
本文讨论一个Leray型问题.证明了二维非单连通管型区域上带slip边界条件,在无穷远处有给定速度的不可压Navier-Stokes方程稳定解的存在性和正则性.Amick和Amick-Fraenkel曾讨论了单连通管型区域上带Dirichlet边界条件不可压Navier-Stokes稳定流的存在性.Mucha则证明了某些二维管型区域上带slip边界条件的Navier-Stokes稳定流的存在性和正
本文采用2011—2019年间沪深A股上市公司为研究样本,实证检验了数字化转型对企业年报可读性的影响。研究发现,企业数字化转型程度越高,企业的年报可读性越高。进一步研究发现,数字化转型提升企业动态能力、提高分析师关注,改善了企业年报可读性,继而降低了企业财务风险。内部控制质量高、行业竞争力强的企业,数字化转型对企业年报可读性的影响更明显。本文结论发现了数字化转型缓解信息不对称的相关表现及其影响机制