论文部分内容阅读
活细胞内单分子行为研究和活体动物成像已经成为荧光生物成像的前沿领域。然而在单分子和活体动物这两种极端的情况下,生物样品中大量存在的内源性荧光物质产生的自发荧光会对标记分子的荧光信号产生非常严重的干扰。为了解决生物成像中自发荧光干扰的问题,我们必须开发一些能完全消除自发荧光干扰的“新型发光探针”。本论文针对这一目标开展研究,主要包括四个部分。1.红色荧光化学计量器用于活细胞内Cu2+的荧光成像从发光波长方面考虑,利用生物组织对红光和近红外光的吸收非常弱的特点,并考虑到明确生理过程中铜的浓度和亚细胞分布的变化情况对于研究铜的复杂生理功能和致病机理具有重要的意义。我们设计合成了一个含有高电负性S原子的罗丹明B衍生物,实验表明这个化合物是一个Cu2+化学计量器,对Cu2+的响应表现为红光区的发射增强。利用一个Cu2+促进的罗丹明开环、氧化还原和水解反应的识别机理,加入Cu2+引起的荧光强度的增加和吸收强度的增加相当,说明以此化学计量器为探针可以有效地避免Cu2+顺磁性造成的荧光淬灭。更重要的是,这个探针能快速(响应时间≤1 min)、高灵敏(检出限≤10 ppb)、高选择地识别Cu2+。单光子、双光子荧光成像及台盼蓝细胞活性实验证实该探针可以用于检测活细胞中的Cu2+,显示Cu2+的亚细胞分布。2.磷光重金属配合物用于活细胞磷光成像利用磷光重金属配合物为探针,结合时间分辨成像技术,可以区分来自标记物的寿命较长的发光(~μs)和寿命较短的自发荧光(~ns),有望完全消除自发荧光的干扰。铱配合物是一类性质优异的磷光重金属配合物,但其在生物成像中的应用尚未见文献报道。首先,我们合成了两个具有明亮的绿光和红光发射的阳离子型铱配合物,并且证明了它们是特异性染色活细胞胞浆的磷光染料。这两个铱配合物在缓冲溶液中发光效率较高,很容易穿过细胞膜进入细胞,专一性地染色细胞的胞浆区域,且细胞毒性低,光稳定性相较于有机染料DAPI有所提高,是一类性能优良的小分子磷光探针。其次,我们将一个对组氨酸有发光响应的铱配合物用于细胞成像,发现它能快速且特异性地染色活细胞和固定细胞的细胞核,并仅在细胞核区域表现出明亮的发光。3.稀土上转换发光纳米材料用于激光扫描上转换发光显微成像(LSUCLM)稀土上转换发光纳米材料(UCNPs)在980 nm连续光激发下具有独特的上转换发光过程,是一类非常有潜力的生物标记材料。我们发现UCNPs上转换发光的成像形式非常特殊,非焦面的上转换发光信号会使焦面细节完全模糊,导致图像分辨率很差。通过引入反式的激发二色分镜和共聚焦针孔技术,我们成功地消除了非焦面的上转换发光的干扰,并且发展了一种新的三维成像方法,即激光扫描上转换发光显微成像(LSUCLM)技术。随后,通过对UCNPs掺杂的薄膜、有机荧光染料和UCNPs同时标记的细胞进行成像实验,我们发现以UCNPs为发光探针的LSUCLM拥有很多独特的优势,如对有机染料和UCNPs的光漂白均非常低,完全消除了来自内源性荧光物质和同时标记的荧光染料的背景干扰,还可以与普通共聚焦荧光成像系统联用等。4.放射性核素标记的稀土纳米晶用于正电子发射断层扫描(PET)和上转换发光双模式成像PET技术具有最高的活体成像灵敏度;而对细胞和组织显像一般采用荧光成像方式。因此,开发同时具有放射性和荧光的探针可以构造出用于多尺度成像的显像剂。我们利用18F-和稀土离子发生特异性结合反应的原理,发展了一个简单、快速、高效的方法制备了18F标记的稀土上转换发光纳米晶(即18F-UCNPs),放射性标记率>60%。通过在体(in vivo)microPET及LSUCLM成像实验,我们研究了18F-UCNPs在小鼠体内的生物分布,证实了18F-UCNPs可以作为双模显像剂同时用于PET和上转换发光成像。在体PET成像和LSUCLM成像的联用,为实现18F-UCNPs标记物从细胞到活体多尺度上的高灵敏度的可视化提供了一种独特的方法。