论文部分内容阅读
聚对苯二甲酸乙二醇酯(PET)是当今世上产量最大、应用最广的高聚物材料,但PET制品,尤其是PET纤维的易燃性给人类的生命和财产安全带来了极大的火灾隐患。因此,对PET进行阻燃改性具有十分重要的意义。目前,PET常用的传统阻燃剂暴露出诸多缺陷,开发具有“无卤、环保、低添加、抑烟、能用于纺丝”特征的新型阻燃剂成为当前PET阻燃改性的研究热点。碳材料作为一种新兴阻燃剂,在高聚物的阻燃改性中表现出“无卤、环保、高效”的优势。前期研究表明碳微球(CMSs)对PET具有较高的阻燃效率,但目前用碳材料对PET进行阻燃改性的研究尚处于起步阶段,CMS s/PET体系的阻燃机理尚不明确。此外,CMSs直接作为阻燃剂时无法达到“抑烟”的要求。氢氧化镁(MH)是一种具有抑烟功效的绿色阻燃剂,但它的缺点是阻燃效率低、且与聚合物的相容性差。因此,将CMSs和MH配合使用构建新型的复合阻燃剂,并将其用于PET及其纤维的阻燃改性,具有重要的研究价值和广阔的发展前景。本课题以“低添加+阻燃+抑烟+可纺”为目的,构建了一种具有双壳结构的微胶囊碳微球阻燃剂,将其用于PET的阻燃改性。首先依次研究了CMSs、氢氧化镁包覆碳微球核壳型阻燃剂(MH@CMSs)以及双壳型微胶囊阻燃剂(MMH@CMSs)在PET复合材料中的阻燃特性和阻燃作用机理。然后研究了MMH@CMSs/PET阻燃母粒的结晶性能和流变性能。最后采用熔融纺丝法制备了阻燃纤维,并用该纤维试织了织物,研究了阻燃纤维和织物的各项性能。全文主要的研究内容和结论概括如下:(1)制备了CMSs及CMS s/PET阻燃复合材料,表征了CMS s/PET的阻燃性能,并重点研究了CMSs对PET的阻燃作用机理。结果表明:CMS s/PET的阻燃机理为交联成炭机理。在CMSs/PET受热分解初期,CMSs大的表面能使其迁移到PET熔体表面。CMSs表面的自由基与PET降解产生的大分子自由基发生耦合,从而原位形成了交联网,抑制了分子链的断裂并隔离了热量,提高了 PET的热稳定性和难燃性。同时,CMSs能捕捉高活性的氢氧自由基(OH·)来抑制燃烧的自由基链式反应。此外,CMSs能促进PET成炭,炭质颗粒在交联网的作用下沉积在PET表面,提高了炭层的热稳定性和致密性。因此,CMSs使PET燃烧时生成了一个致密有效的三维空间炭层,该炭层牢牢地覆盖在PET表面,有效地隔绝了热与质的传递,从而起到了阻燃作用。(2)为了改善CMSs/PET体系的抑烟性,引入抑烟剂MH。结果表明:CMSs和MH对PET有协同阻燃作用。当将CMSs和MH直接复配使用时,二者的质量比为5:5时阻燃和抑烟效果最好,此时CMS s/MH/PET阻燃复合材料的总生烟量(TSR)比CMS s/PET降低了12.2%。但在此方法中阻燃剂团聚严重,导致CMS s/MH/PET的力学性能严重恶化。因此,研制了 MH包覆CMSs的核壳结构的阻燃剂MH@CMSs。当MH@CMSs的添加量为1.0 wt.%时,MH@CMSs/PET的极限氧指数(LOI)达到了27.5%,UL 94垂直燃烧等级达到了V-0级,TSR 比CMSs/PET降低了31.9%。阻燃机理研究表明:经MH包覆后,CMSs对PET的凝聚相阻燃作用进一步增强。与CMS s/PET相比,MH@CMSs/PET燃烧生成的炭层的致密性、连续性以及热稳定性均被极大地提高。在燃烧过程中,核壳型阻燃剂MH@CMSs由表及里呈梯度分解。核心CMSs的主要作用是形成交联网并促进PET成炭,而作为壳层的MH则起到保护CMSs、吸收燃烧区热量、稀释可燃气体浓度以及强化炭层结构四方面的辅助作用。(3)为了改善阻燃剂与PET基体之间的相容性和界面结合性,采用微胶囊技术,在核壳型阻燃剂MH@CMSs的表面再包裹一层PET囊壁,制成了具有双壳结构的微胶囊阻燃剂——MMH@CMSs。该方法有效地提高了阻燃复合材料的力学性能,当阻燃剂的添加量为1.0 wt.%时,MMH@CMSs/PET的抗拉强度和断裂伸长率比MH@CMSs/PET分别提高了57.3%和42.1%。此时,MMH@CMSs/PET的LOI为27.4%。与纯PET相比,MMH@CMSs/PET的点燃时间(TTI)延长了20 s,热释放速率峰值(pk-HRR)、总热释放量(THR)以及TSR分别降低了36.6%,22.0%和40.8%。胶囊化处理并未对MH@CMSs阻燃剂的阻燃机理产生实质性的影响,但MMH@CMSs的阻燃效率比MH@CMSs略有降低。(4)为了给纺丝提供理论依据,对MMH@CMSs/PET阻燃母粒的结晶性和流变性进行了研究。结果表明:MMH@CMSs阻燃剂的引入不会改变PET的球晶生长模式,但MMH@CMSs对PET有异相成核剂的作用,其引入显著加快了PET的结晶速率,并提高了PET的结晶活化能。纯PET和MMH@CMSs/PET熔体均属于假塑性流体。在相同温度下,MMH@CMSs/PET的非牛顿指数和结构粘度指数均与纯PET接近。在相同的剪切速率下,MMH@CMSs/PET的粘流活化能略高于纯PET,意味着MMH@CMSs/PET对温度的敏感性增加。(5)用熔融纺丝法制备了阻燃纤维(FR-PET纤维)。结果表明:MMH@CMSs阻燃剂在PET纤维中的最佳添加量为0.6 wt.%,此时FR-PET纤维的LOI为25.8%。,pk-HRR、THR和TSR较纯PET纤维分别降低了27.3%、23.6%和13.6%。以纯涤纶为经纱、所制备的FR-PET纤维为纬纱织造了阻燃涤纶织物(FR-PET织物)。当经纱密度为180根/10 cm,纬纱密度为200根/10 cm时,该织物可达到纺织品阻燃等级的B1级。综上所述,通过对CMSs和MH@CMSs在PET复合材料中的阻燃特性进行研究,提出了CMSs的交联成炭机理和MH@CMSs的协同阻燃机理。并针对阻燃剂与PET之间的界面结合问题,构建了双壳型微胶囊阻燃剂MMH@CMSs。MMH@CMSs对PET具有较好的阻燃和抑烟效果,并适用于涤纶的熔融纺丝,达到了“低添加+阻燃+抑烟+可纺”的研究目的。