论文部分内容阅读
V基贮氢合金电极具有较高的放电容量,是作为Ni-MH电池负极的核心材料。然而,较高的成本和较低的循环稳定性能限制了其产业化发展。本文是在全面综述V基贮氢合金电极研究进展的基础上,从降低成本和改善合金电极循环稳定性能出发,选择较低V含量的VTiCrNi四元合金为基础合金,以添加或取代的方式加入Mo、Mn、Sn元素以及V2O5金属氧化物。采用XRD、SEM等研究了合金电极的微观结构;采用高倍率放电、电化学阻抗、线性极化以及恒电位放电对合金电极的电化学性能进行表征;采用ICP分析了合金电极充放电后在电解液中的腐蚀成分。最后,通过在电解液中添加ZnO,研究其对合金电极性能的影响。对V2Ti1-xNiCrx(x=0.1-0.7)合金电极的组织结构及电化学性能进行了研究。结果表明,合金均由BCC结构的V基固溶体主相和TiNi二次相组成,BCC结构的V基固溶体呈树枝状均匀分布,而TiNi二次相则以三维网状结构分布在V基固溶体主相的周围。合金电极的活化性能以及最大放电容量均随着Cr替代Ti含量的增加有所减低;而合金电极经过30次充放电后的容量保持率C30/Cmax先升高而后降低,在x=0.5时达到最大值,为91.3%;高倍率放电性能先增大而后减小,适量的Cr替代Ti有利于降低合金电极表面阻抗,提高氢的扩散系数。因此,合金电极的性能和Ti、Cr比例有关,当Cr替代Ti含量x=0.5时,合金电极具有最佳的电化学性能。通过对V2Ti0.5Cr0.5Ni1-xMx(M=Mo、Sn、Mn)体系合金电极组织结构和电化学性能研究发现,所有合金均具有两相结构,即BCC结构的V基固溶体主相和TiNi二次相,V基固溶体主相呈树枝状分布,TiNi二次相以三维网络状分布在V基固溶体相的周围。Mo和Sn替代Ni对合金电极的最大放电容量Cmax影响不是很大,而Mn替代Ni后,合金电极的最大放电容量明显增大,在x=0.2时,最大放电容量达到429.3mAh/g。所有合金电极的容量保持率随着充放电循环过程的进行均有所降低,尤其是含Mn合金电极的容量衰退最为严重,这主要是由于含过多的Mn的合金在充放电循环过程中,易造成Mn的偏析,合金严重粉化,导致合金电极的循环稳定性能变差。电化学动力学研究表明,含Mo的合金电极电化学动力学性能随Mo替代Ni含量的增加先得到改善,而后降低,在x=0.04时,合金电极的高倍率放电性能,交换电流密度和氢扩散系数均得到最佳值。而Sn和Mn替代Ni之后,合金电极的交换电流密度和高倍率放电性能都降低,不利于合金电极的电化学动力学性能。对V2-xTi0.5Cr0.5NiOx(x=0-0.35)合金电极的组织结构和电化学性能研究,结果表明,当x=0时,合金由BCC结构的V基固溶体相和呈三维网状结构分布在主相周围的TiNi相组成,随着x值增加,合金中出现了Ti4Ni2O新相。电化学测试结果表明,随着合金电极中V2O5替代V含量的增加,合金电极的最大放电容量降低,由x=0时的366.8mAh/g减小到x=0.35时的225.3mAh/g。而合金电极的循环稳定性能得到了改善,经过100次充放电循环后,合金电极的容量保持率由x=0时的69.9%增大到x=0.2时的83.7%。电化学测试结果表明,随着合金电极中V2O5替代V含量的增加,合金电极的高倍率放电性能、交换电流密度和氢的扩散系数先增大后减小,合金电极在x=0.05时综合电化学性能较好,其最大放电容量Cmax为352mAh/g,合金电极经过100次充放电循环后的容量保持率为73.7%,放电电流密度为400mA/g时的倍率放电性能(C400/C60)为70.3%,氢的扩散系数D为6.51×10-11cm2/s。通过分析V2Ti0.5Cr0.5Ni0.9Mn0.1和V2Ti0.5Cr0.5Ni0.8Mn0.2合金电极在充放电循环过程中的电极表面形貌、电化学性能以及合金元素在电解中的腐蚀溶解量得出:随着充放电过程的进行,合金电极表面裂纹明显加宽、加深,这既增加了合金电极内阻,又阻碍了氢在合金体内的扩散,从而导致电荷转移电阻增大,交换电流密度减小,这些因素使得合金电极的放电容量降低,而合金电极中V和Ti元素的腐蚀溶解严重。结果表明,贮氢合金的容量衰退主要是由于合金电极在充放电过程中,活性吸氢元素在电解液中的腐蚀溶解、合金颗粒的粉化、合金电极表面元素的氧化腐蚀以及不可逆氢化物的形成。通过在电解液中添加不同含量的ZnO,分析了在添加不同含量ZnO的电解液中合金电极的表面形貌及电化学性能,发现电解液中添加ZnO明显改善了合金电极的循环稳定性能,当50mL KOH电解液中ZnO添加量为1.2g时,合金电极经30次充放电循环后的容量保持率最大,为97.8%。而随着电解液中ZnO含量的增加,合金电极的放电平台变窄,而且倾斜,表明电解液中添加过量的ZnO对合金电极的放电性能产生不利作用。合金电极的交流阻抗值随着电解液中ZnO含量的增加先减小而后增大,而相应的交换电流密度先增大后减小,在50mL KOH电解液中添加0.8g ZnO时,合金电极的动力学性能相对较好。