论文部分内容阅读
随着图像处理技术、仿真技术、人机交互技术、面向对象编程等技术的发展与成熟,虚拟现实技术大量应用在社会各领域中。针对轨道车辆产品设计在实际过程中设计周期长、设计成本高、设计效果无法实时显示、无法实现设计产品跨平台联动等问题,提出了基于Unity3D的轨道车辆虚拟设计系统研究,开发基于Unity3D引擎平台沉浸感、想象性、交互性特点的轨道车辆虚拟设计系统,为用户提供一个低成本、高效率、多样式,且包括轨道车辆总体设计、关键部件设计、虚拟装配、虚拟运行的集成设计系统。第一章阐述了本文的背景及研究意义,详细讲述了虚拟现实技术特征,综述了基于Unity3D技术在轨道车辆方面应用的国内外现状,包括虚拟现实技术在轨道车辆检修、装配、虚拟运行等方面的应用,并介绍了本文在开发过程中的主要研究工作和文章组织结构。第二章根据项目要求分析了轨道车辆虚拟设计系统需求,详细介绍了轨道车辆虚拟设计系统功能模块和系统组织架构、系统开发软硬件环境,包括虚拟引擎平台、3D建模软件,仿真分析软件,系统阐述了轨道车辆虚拟设计系统开发技术路线。第三章研究了轨道车辆虚拟设计系统功能实现的关键技术,提出了UI自适应屏幕与锚点和空间扇形检测方法解决人机交互问题;研究了场景虚拟视角控制数学模型算法,解决了运行场景运行时视角变化不真实,用户眩晕、运行画面切换不稳定等问题;分析了不同实时碰撞算法之间的优缺点,提出使用AABB包围盒算法进行场景模型间的碰撞检测,实现模型间碰撞的快速检测。第四章开发了基于Unity3D的轨道车辆虚拟设计原型系统,介绍了系统3D模型构建、车辆总体设计子模块、关键部件结构设计子模块、虚拟装配设计子模块、虚拟运行子模块主要功能实现的方法方式。第五章分析了轨道车辆虚拟设计系统在相应硬件环境下,对用户需求、模型功能、数据的准确性、运行流畅度等功能效果进行了调试,根据调试结果对系统模型和内存进行了优化,模型优化考虑Mesh合并、控制多边形数量两个方向,内存优化考虑Assert、引擎Native、和临时调用对象三个方向,优化测试结果表明轨道车辆虚拟设计系统运行稳定流畅,功能符合需求,具备可扩展性。第六章总结本文研究内容,对论文研究内容和方向进行了展望。