供水系统统地震韧性评价框架体系研究究

来源 :中国地震局工程力学研究所 | 被引量 : 0次 | 上传用户:chang_baoping
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
追本溯源,韧性(Resilience)是物理学领域材料科学中的一个基本概念。20世纪80年代,有学者首次将韧性概念与自然灾害联系起来。21世纪初期,韧性城市这一概念首次在联合国可持续发展全球峰会上被提出,随后,对国家韧性、社区韧性、工程系统韧性等方面的研究逐渐兴起并发展至今。2018年美国国家科学院国家研究委员会等机构编撰系列丛书,详细阐述灾害韧弹性概念。目前对工程系统地震韧性的研究范畴包括建筑结构、交通系统、供水系统、供电系统、通讯系统等,但研究成果普遍较少,且没有成熟的评价体系。因此,本文的研究内容是基于前人的研究成果,对供水系统地震韧性展开相关研究。
  论文主要完成工作及取得成果:
  完成了供水系统地震安全性相关研究。给出了供水系统地震安全性的定义,提出以本地区应采取的抗震设防烈度水平的地震作用作为输入基准;将供水系统地震安全性划分为优、良、中、差4个等级;建立单体元件损伤指数模型,结合层次分析法所得重要性系数,建立了供水系统地震安全性评价模型;通过算例分析证明该模型所得结果符合实际情况,且可对相同或不同设防烈度区的供水系统地震安全性进行比较;从供水系统基础参数和抗震应急措施中总结可以提升地震安全性的方法。
  完成了供水系统震后可恢复性相关研究。给出了供水系统震后可恢复性的定义,提出以本地区人力资源储备为输入基准对供水系统进行维护或维修;将供水系统震后可恢复性划分为优、良、中、差4个等级;建立单体元件功能指数模型,为了模拟震后恢复过程建立了本地区人力资源评估模型,根据单体元件的恢复时间及所需人力资源计算供水系统恢复时间,根据单体元件的损失比计算供水系统恢复费用,建立了供水系统震后可恢复性评价模型;通过算例分析证明该模型所得结果符合实际情况,且可对相同或不同设防烈度区的供水系统震后可恢复性进行比较;从供水系统基础参数和震后恢复措施及过程中总结可以提升震后可恢复性的方法。
  完成了供水系统地震韧性相关研究。根据灾害韧性的核心内涵,建立了基于供水系统地震安全性评价和震后可恢复性评价的地震韧性评价体系,将供水系统地震韧性划分为优、良、中、差4个等级;针对供水系统地震韧性研究的热点问题-基于用户数量的供水服务功能这一指标进行研究,建立了震害率与基于用户数量的供水服务功能之间的关系,估算地震韧性4个等级下的供水服务功能正常的用户比例;通过算例分析证明供水系统地震韧性评价体系可对相同或不同设防烈度区的供水系统地震韧性进行横向或纵向比较,且可以得到相应设防烈度水平的地震作用下,震后及恢复期间供水服务功能正常的用户比例。
其他文献
新兴的非易失性存储器件(NVM ,Non-volatile Memory)具有持久性、字节寻址、高集成度、低能耗、价格低廉等优点,相比于DRAM等传统存储器件具有更广阔的发展前景。但NVM器件单元一般仅能承受108~1012次写入,远小于传统DRAM器件的使用寿命。而应用负载的写分布不均更是加速了器件的老损,如何延长NVM器件的使用寿命是目前应用研究的难点之一。  针对现有NVM器件磨损均衡方案存
近年来,云盘凭借其高可用、高可靠、低成本以及可定制化的特点,在云块存储系统中的应用越来越广泛。云块存储系统后端有很多存储仓库,系统通过一定的分配策略将新云盘分配到最合适的仓库来供用户使用。随着云计算和互联网技术的快速发展,用户数据量显著增长,对云盘的分配策略带来了巨大的挑战。由于新云盘在分配前的负载信息未知,现有的云盘分配策略仅考虑存储容量维度,从而导致云块存储系统多维度资源(例如容量、IOPS、
学位
随着多媒体数据的爆发式增长和云存储技术的迅猛发展,海量云端数据呈现出多模态混合并存的特性,如何以内容语义为标准对其进行智能化管理和跨模态分析成为传统云存储系统面临的新挑战。一方面,数据体量的增加和模态之间的差异导致有效数据的检索难度陡然提升。另一方面,现有存储系统中,数据无法建立以内容语义为标准的标签与关联。因此,根据用户需求和内容相关性智能化检索云端多模态数据是当下亟待解决的热点问题。  目前,
大脑作为中枢神经的主要组成部分,是生物体最复杂、最重要的器官之一,其结构和功能机制是当前脑科学研究领域的热点和难点。脑科学研究者们从高分辨生物图像中重建出神经元、血管、核团形态并进行计算和分析,由于形态学研究需要大量数据,数据共享变得尤为重要。然而,目前的数据共享方式局限于文件、文字、图片、视频等静态信息,需要用户下载或者拷贝数据并使用本地软件才可进行形态观察,浪费大量人力与物力。此外,现有的可视
为了处理大量的实时数据流,现有的分布式流处理系统遵循数据并行的原理,并利用不同的数据分区策略。其中一对多分区策略(例如,ApacheStorm中的广播分组)在各种大数据应用程序中起着至关重要的作用。对于一对多数据分区,上游处理实例将生成的元组发送到大量的下游并行处理实例。现有的分布式流处理系统通常基于面向实例的通信来实现一对多数据分区,其中上游实例将数据元组分别传输到不同的下游实例。但是,多个下游
网络功能虚拟化(Network Function Virtualization,NFV)通过虚拟化技术,将传统的基于专用硬件的网络功能,以软件的形式(虚拟网络功能)部署在通用服务器上,然后按需链接对应的虚拟网络功能形成服务功能链,对用户的请求进行服务。然而由于通用服务器的处理能力有限等原因,NFV的性能是一个亟待优化的问题。传统的基于各种先决条件和模型的性能优化方案,在实际网络环境中有很大的限制性
图计算在现代社会中的应用越来越广泛,例如在社交网络,生物信息学和信息网络中均有大量应用。由于图结构的不确定性、幂律分布以及复杂依赖关系等特性,图计算在使用冯·诺依曼体系结构的通用处理器(Central Processing Unit,CPU)上的处理效率远未达到理想水平。一方面,由于图的不规则性,导致内存访问的时间过长进而引发流水线插槽无法正常地回退,后续的指令无法正常进入流水线插槽执行。因此,每
学位
由于某些突发事件,例如社交网络上的热门新闻或特价商品销售,而产生的突发流量可能会导致后端服务器严重的负载不均衡问题。迁移热数据作为实现负载均衡的标准方法,在处理这种意外的负载不平衡时遇到了挑战,因为迁移数据会进一步降低已经过载的服务器的处理速度。  网络功能虚拟化是一种新兴的技术,可以灵活地将网络功能以软件的方式部署在通用服务器上。PostMan基于网络功能虚拟化设计,作为热数据迁移的替代方法,可
随着云计算技术的进步和成熟,从小型初创企业到行业巨头都选择将业务部署到公有云平台上。公有云服务提供商在全球多个地区建立了数据中心为附近用户提供低时延的资源租赁服务。在这些跨域集群上部署的服务不断产生大量数据,分析这些数据对于公司或组织作出各类决策具有极高价值,这类横跨多个跨域数据中心进行数据分析的作业称为跨域数据处理。如何高效、低成本、及时地开展跨域数据处理变得至关重要。  跨域数据处理中的主要问
在目前国内的建筑理论的现行认识中,对于巴洛克建筑的梳理、解释、定位等问题尚处于一个较为边缘状况下①。对于波洛米尼的研究则是凤毛麟角,综合性视角下的建筑理论研究数量稀少,在观察到这一现象后,本文进行了一系列的发问与探究。  本文叙述的前提在于对这一时期的整体观察:即观察到这是一个重新定义的时代,各个行业与概念在进行着自己范围与边界的重新划定,这意味着旧有的边界被打开,相互之间范围的被重新确定。特别是