论文部分内容阅读
酞菁,拥有18π电子体系的卟啉类似物。近年来,由于酞菁特殊的骨架结构而引起了科学家们的极大兴趣。通过向酞菁环中心引入离子、改变轴向配体以及周边取代基团对酞菁进行筛选和组装,从而获得具有特殊物理和化学稳定性以及光化学、电化学、光催化等功能的材料。众所周知,卟啉酞菁类配体可以与不同的稀土金属配位形成三明治型结构。大π共轭体系、大环间的强烈π-π作用、镧系金属离子以及单电子自由基等特征,让三明治型配合物在非线性光学材料、气体传感器、有机场效应晶体管、单分子磁体等方面有潜在应用。亚酞菁是酞菁的低聚物,含有三个吡咯单元的14π电子芳香体系,具有碗状结构。最近这些年,亚酞菁作为新型功能染料受到了很多关注。在酞菁或者亚酞菁外围稠合额外的芳香单元能够有效调控它们的光学和电化学性质,以期能够适用于更多的功能性应用。对于三明治型配合物也是同样如此。本论文设计、合成了一系列的新型酞菁、亚酞菁衍生物以及三明治型酞菁配合物,并对其结构与性能之间的关系进行了研究。主要研究内容如下:(1)合成了两例新型芘稠合的低对称性酞菁衍生物Zn[Pc(Pz-pyrene)(OC8H9)6]和Zn[Pc(Pz-pyrene)2(OC8H9)4]。通过各种谱学手段以及电化学方法对这些并芘酞菁衍生物的性质进行表征,而且还结合理论计算模拟了它们的电子结构。特别是得到了化合物Zn[Pc(Pz-pyrene)(OC8H9)6]的单晶结构,代表了第一例通过单晶X射线衍射分析的稠合芳香部分大于苯环的酞菁衍生物。(2)合成了一系列芘稠合的亚酞菁衍生物0~3,它们分别含有零、一、二和三个芘单元。通过一系列谱学手段,包括MALDI-TOF、NMR以及电子吸收、磁圆二色性和荧光发射光谱对其进行了表征。而且在单晶X射线衍射分析的基础上清楚地展示了化合物0和2的分子结构。通过循环伏安法测试可以看出,随着稠合芘单元的增加,其相应的第一氧化和第一还原电位逐渐朝正向移动,这主要是由于吡嗪并芘部分的吸电子作用引起的。除此之外,理论计算结合电子吸收光谱和电化学分析揭示了稠合芘单元对电子结构的显着影响。(3)通过四硫富瓦烯前驱体和1,2-二氰基苯在半三明治为模板的情况下混合环四聚形成和分离出一系列新型的三明治型四硫富瓦烯稠合的杂双(酞菁)铕配合物 Eu(Pc)[Pc(TTF)n](n=1-4)(1、2-顺式、2-反式、3、4)。电子吸收光谱结果揭示了四硫富瓦烯稠合双层酞菁生色团对目标化合物电子结构的影响。电子自旋共振谱、红外光谱和电子吸收光谱都证实了新制备的杂配配合物中未配对电子的存在。特别是,除了基于酞菁生色团的单电子氧化还原,通过循环伏安法还清楚地揭示了化合物1、2-顺式和2-反式、3、4分别对应的来自四硫富瓦烯部分的单电子、双电子、三电子、四电子氧化过程,表明三明治型配合物受到稠合四硫富瓦烯单元的显着影响。特别地,0和4的理论计算结合电子吸收光谱同样证实了稠合四硫富瓦烯单元对电子结构的调控。(4)合成并表征了一种新型十字形共轭五核酞菁。在DSPE-PEG2000-OCH3的帮助下,这种单分子材料组装成的水溶性纳米粒子(Zn4-H2Pc/DPNPs)在1064nm的NIR-II区域具有特征吸收,消光系数达到52 Lg-1cm-1,光热转换效率高达58.3%,并有强烈的光声信号。此外,体外和体内研究都表明了 Zn4-H2Pc/DPNPs具有良好生物相容性,并且在第二近红外窗口有显著的肿瘤消融能力。