论文部分内容阅读
自适应光学成像技术通过实时探测和校正大气湍流引起的波前畸变,能够恢复望远镜对空间目标的高分辨成像能力。但是往往被观测目标很暗,自适应光学系统无法分解出足够的波前探测能量限制了其成像能力。为此人们提出了人造激光导星技术来提高自适应光学系统对暗目标探测能力的方法。本文根据瑞利导星比较容易实现,所要求的激光器已有市售商品,深入研究了基于瑞利导星的自适应光学技术。瑞利导星采用自适应光学系统旁的激光发射系统向被观测目标方向发射脉冲激光,激光脉冲在10~20km处形成所谓的“瑞利导星”。瑞利导星自适应光学系统的工作原理,是自适应光学系统中的波前探测器接收瑞利导星的后向散射光给出波前畸变信号。主要有以下问题:1、瑞利导星的散射层采样厚度一般限制为1~2km,导致此范围以外的光能量不能被接收,因而瑞利导星的波前探测能量比较低;2、由于瑞利导星工作高度相对被成像目标来说低得多,对望远镜形成锥形光通道而不像后者形成圆柱形光通道,因此瑞利导星不能对观测目标的整个大气通道进行全部采样,导致波前探测误差较大;3、瑞利导星不能提供望远镜口径上波前倾斜信息。本研究针对波前探测能量低的问题,设计了动态聚焦系统,利用动态元件的实时移动使激光在任何高度处都理想成像;该动态聚焦系统可以实现10km厚度的瑞利散射层探测,在13km高度处的瑞利导星亮度可高达2.1视星等,相比于1km的采样厚度,理论上波前探测能量可以提高7.3倍。针对波前探测精度低的问题,采用五颗导星降低聚焦非等晕误差,理论上对于10米望远镜,采用5颗位于10km处的瑞利导星,其聚焦非等晕误差会下降约34%。据此提出利用准直透镜阵列和远心光路实现多导星波前探测系统的设计。针对波前整体倾斜探测问题,采用被观测目标的400nm~600nm范围的光能量进行倾斜探测。对于1.23m望远镜对观测目标进行2倍衍射极限成像时,且高阶校正后残差为1rad时,波前倾斜残差需小于0.0266″,此时9等星亮度的观测目标即可满足探测要求。说明使用瑞利导星可使自适应光学系统的观测极限星等由5视星等提高到9视星等。最后,设计了一套瑞利导星自适应光学系统,解决了瑞利导星有限高度对望远镜成像焦点和无限远成像焦点不重合而产生的离焦问题。为了提高系统的校正精度,根据液晶校正器的工作机制,分析了由于有限驱动电压和灰度级引起的器件误差,并提出优化方案;同时提出一种提高响应矩阵测量精度的方法,该方法针对不同Zernike模式特定其模式系数,使每一项Zernike模式波面相对于256×256像素数液晶波前校正器的量化级次都达到10级;同时利用最小二乘法消除测量过程中的随机噪声。该方法相对于改进前的响应矩阵测量方法,使自适应校正后的图像功率谱显著提高,部分频段提高有2~3倍。本论文属于瑞利导星自适应光学系统的开创性工作,经过波前探测能量、波前探测精度以及校正精度方面的改进,展示出了瑞利导星可以应用于大口径望远镜的自适应光学系统的潜力。论文的研究成果对瑞利导星自适应光学的应用做出了一定的贡献。