【摘 要】
:
提升电泵是深海采矿管道提升系统中的一个重要设备。其内部流动状况复杂,除了满足基本指标外,还要兼顾尺寸限制。同时,在实际应用过程中碰到了颗粒堵泵、部件磨损严重和振动等情况。因此,研究提升电泵中固液流动规律以及结构模态分析,对指导泵的设计和优化泵的运行工况提供基础。本文主要工作如下: 采用斜流泵三维设计方法,设计了斜流泵,并通过网格数量无关性验证后对斜流泵进行了数值模拟,其结果显示水力性能满足设计要
论文部分内容阅读
提升电泵是深海采矿管道提升系统中的一个重要设备。其内部流动状况复杂,除了满足基本指标外,还要兼顾尺寸限制。同时,在实际应用过程中碰到了颗粒堵泵、部件磨损严重和振动等情况。因此,研究提升电泵中固液流动规律以及结构模态分析,对指导泵的设计和优化泵的运行工况提供基础。本文主要工作如下:
采用斜流泵三维设计方法,设计了斜流泵,并通过网格数量无关性验证后对斜流泵进行了数值模拟,其结果显示水力性能满足设计要求。同时,对不同流量下的斜流泵内部流场进行分析,筛选出可优化的结构参数。
针对两级斜流泵的水力性能进行数值模拟,研究叶轮包角、导叶轴向长度和导叶包角结构参数对两级斜流泵水力性能及泵内流动状况的影响。通过对比原始模型和优化后模型的水力性能和内部流场,确定最佳叶轮包角、导叶轴向长度和导叶包角等结构参数。
对优化后的首级斜流泵模型进行固液两相数值模拟,研究颗粒浓度和颗粒粒径对斜流泵内颗粒聚集状况、叶轮和导叶的磨损情况以及颗粒过泵时间分布的影响。通过分析颗粒体积分数云图和磨损率云图,得到深海采矿斜流泵在正常运行中最易出现颗粒聚集的部位,叶片需要注意加厚及抗磨损防护的部位。
采用单向流固耦合方法,分析不同工况下离心力和水压力分别单独作用和共同作用时对转子系统强度的影响,得到泵转子系统所受最大等效应力及最大总变形的影响规律。并进行空载工况和额定工况下的模态分析,通过比较一阶临界转速和额定转速,结果显示泵转子系统运行稳定,不易发生共振。
本文的研究结果可以为深海采矿多级斜流泵的设计研发提供一定的理论依据,也为该类泵产品的优化设计具有参考意义。
其他文献
探索节能减排途径和寻找替代燃料一直是业界关注的重点。甲醇作为一种可再生能源,具有汽化潜热大、辛烷值高、含氧量大、层流火焰速度快、稀燃极限宽等特点,是一种理想的内燃机燃料。为在当前点燃式发动机上灵活高效使用,利用甲醇进气道喷射和汽油缸内喷射(MPI+GDI)相结合的复合喷射系统,实现不同甲醇替代比和不同燃烧方式的灵活调节。本文基于一台缸内直喷光学发动机,加装进气道喷醇系统后,进行了喷雾和缸压试验验证
随着能源问题的日益突出,我国能源发展面临诸多重大挑战,急需通过科技创新实现能源革命和转型。“纳米流体”作为强化传热技术中的换热工质,有巨大的潜在应用前景,深入研究纳米流体流动传热机理对科技创新推动能源革命和转型具有重大意义。现阶段已有很多学者针对纳米流体的性能提升进行了许多实验与数值研究,总体来看,依旧有以下不足,实验研究时面临纳米流体的尺度微小、制备工艺复杂、精度要求高等困难,已有的数值模拟较少
随着我国经济的快速发展,能源和环境问题日益凸显,探索汽、柴油的替代燃料已成为内燃机研究的重要方向之一。甲醇是一种辛烷值高、含氧量大、稀燃极限宽、且提取工艺成熟的燃料,但因其物化性质与传统燃料差别较大,目前将甲醇用于发动机仍存在汽化潜热大等诸多问题。本研究采用了非线性大涡模拟方法,对甲醇蒸发喷雾进行了模拟验证及相关模型参数的探讨,搭建了甲醇缸内喷射的发动机模拟平台。 因缸内直喷发动机燃料喷射环境温
随着各国军事力量的不断发展,军用设备燃料后勤保障的便捷性和安全性问题逐渐被各国所重视。目前,航空煤油和轻质柴油因其闪点高、运输和储存安全性能好等特点,在战场上被广泛使用。为了简化燃料后勤保障体系,“战场燃料单一化”即所有的动力装备都必须能使用航空煤油作为燃料受到越来越多的关注。在这方面,国内相关研究起步较晚,与国外相比还存在较大差距。目前,无论国内还是国外,航空煤油在高环境温度、高喷射压力工况下的
RCCI(Reactivity controlled compression ignition)燃烧模式作为一种新型的燃烧模式具有着高燃烧效率,低排放的特点。但是其在中高负荷容易出现过高的压力升高率以及敲缸现象,因此需要引入EGR来缓解这种现象。本文基于激波管实验研究了EGR中的氧气、未完全氧化产物(Incomplete oxidation products, IOP)以及单一组分对于乙醇/正庚烷
作为工业革命的产物,内燃机在推动社会经济发展和改善人民生活水平方面发挥了举足轻重的作用,但同时也带来了能源消耗和环境污染问题。纳米材料作为润滑油添加剂时能够降低活塞环-缸套运动副的摩擦损失、减少磨损;同时还能够缓解P、S等元素造成的污染,相比于传统添加剂有着诸多优点。本文将在此基础上开展纳米添加剂对活塞环-缸套摩擦学特性影响机理研究。 本文首先以油酸作为分散剂,采用磁力搅拌和超声震荡相结合的分散
稀薄燃烧和高压缩比技术具有很大的提高热效率潜力,但这些技术会在缸内形成混合气稀薄、高压的环境,特别是在点燃式内燃机方面,稀薄混合气容易出现点火困难,早期燃烧不稳定等问题。相关研究者借鉴等离子体助燃和电场助燃理论,提出微波辅助点火燃烧技术,该技术可以大幅提高点火时羟基等自由基的浓度,明显改善点火性能。但是研究发现,随着环境压力的升高,微波助燃的效果越来越差,而内燃机的缸内燃烧往往处于高压环境,这使得
目前新兴的数字微流控(Digital Microfluidics, DMF)芯片,主要利用介电润湿效应(Electrowetting of Dielectric, EWOD)操控液滴运动并完成各项操作,该技术凭借其清洁节能、样品消耗少等独特优点,在近十年来迅速成为生化、医学及能源工程等领域的研究热点之一。然而,由于宏观流体和微观流体的流动特性不同,微尺度下基于数字微流控芯片的微液滴的运动过程内在机
叶轴流风机叶片的外形由若干翼型积叠而成,优化翼型可以有效提高风机性能。本文将NACA4412翼型作为研究对象,研究了基于分段贝塞尔曲线的翼型参数化方式,在此基础上采用CFD方法结合遗传算法对翼型的厚度分布与弯度分布实施了优化,分析了优化前后翼型的气动特性及其与攻角、型线特征等因素之间的关系,旨在为翼型型线优化方法提供新的思路与参考依据。 研究了基于分段贝塞尔曲线的翼型参数化方法,结果表明该方法能
基于热流逸效应原理制作的努森压缩机,由温度梯度来驱动介质流动,主要结构由微通道与连接通道组成,相比常规压缩机,可在无运动部件下实现流体介质传输,具有可靠性高、寿命长、传输过程精确可控等优点,在微机械和微流控系统中极具应用前景。研究努森压缩机的流场特征,掌握努森压缩机工作特性及影响规律,是努森压缩机设计与应用的关键。 本文在国内外对努森压缩机研究的基础上,结合努森压缩机的结构特点,针对努森压缩机微