论文部分内容阅读
随着电子信息产业的迅速发展,低维软磁薄膜材料由于其在电磁器件中便于小型化、集成化和标准化的优势,日益成为磁性传感器和高频磁性元件的核心材料。在磁性传感技术方面,巨磁阻抗效应(GMI)作为一种具有高信号强度和灵敏的磁场响应的电磁效应具有潜在的应用前景。在高频电子器件方面,要求软磁薄膜在更高的应用频率(GHz)下仍具有较高的磁导率,具有高饱和磁化强度和大的面内磁各向异性的软磁薄膜成为高频应用的重要研究材料。本文中,针对巨磁阻抗效应研究,利用射频磁控溅射方法在Si(111)基片上制备了FeNi/Cu/FeNi三明治结构薄膜和在这种结构的薄膜中引入一层或两层约65 nm NiZn铁氧体(Ni0.5Zn0.5Fe204)夹层的多层膜,即Si/FeNi/NiZn-ferrite/Cu/FeNi和Si/FeNi/NiZn-ferrite/Cu/NiZn-ferrite/FeNi;在铁基非晶带表面沉积了NiZn铁氧体包覆层。针对高频磁性研究,利用倾斜溅射方法制备了不同倾斜入射角度的Fe75.5Cu1Nb3Si3.5B7薄膜;在沿薄膜面施加外加磁场下,均匀溅射了不同厚度的Fe75.5Cu1Nb3Si3.5B7薄膜。研究得到以下主要结果:1.NiZn铁氧体夹层对FeNi/Cu/FeNi三明治结构薄膜巨磁阻抗效应的影响:在FeNi/Cu/FeNi三明治结构薄膜中引入一层NiZn铁氧体层时,薄膜的巨磁阻抗效应增强,GMI比率在10 MHz下达到36%,这在纳米级厚度的薄膜中是一个较大的数值,比传统FeNi/Cu/FeNi三明治结构薄膜的最大GMI比率16%(30 MHz),增加了1.25倍且对应频率有所降低。而引入两层NiZn铁氧体层的FeNi/NiZn-ferrite/Cu/NiZn-ferrite/FeNi薄膜的GMI效应并没有明显增强。由此说明,在磁控溅射制备的纳米薄膜中,加入一层NiZn铁氧体夹层是一种简单有效的提高多层膜的巨磁阻抗效应的方法。2. NiZn铁氧体包覆层对铁基非晶带巨磁阻抗效应的影响:在铁基非晶带光滑面溅射了一层NiZn铁氧体后,其GMI效应相对于未进行NiZn铁氧体包覆的非晶带得到显著增强;最大GMI比率达到80%,是未包覆NiZn铁氧体的非晶带GMI比率的2.6倍。3. Fe75.5Cu1Nb3Si3.5B7薄膜的面内磁各向异性的调节:在沉积23分钟的不同斜溅射角度(3°~32°)下制备的Fe75.5Cu1Nb3Si3.5B7薄膜中,从静态磁性测试结果:面内磁滞回线和转角剩磁曲线来看,薄膜均呈现出宏观的面内单轴各向异性,并且倾斜角度在大小适中约19°时,呈现的各向异性最明显。通过铁磁共振(FMR)高频测试发现薄膜均具有两个对应不同共振场的共振峰,进一步的面内转角铁磁共振分析得到这两个峰对应于Fe75.5CulNb3Si3.5B7薄膜内的两个相:具有高饱和磁化强度的相,随倾斜角度的增大,其各向异性场和饱和磁化强度总体呈上升趋势;而具有较低饱和磁化强度的相的这两个量呈下降趋势。此外,通过在溅射过程中施加外磁场的方法,在沉积时间分别为17分钟、23分钟和35分钟的Fe75.5CulNb3Si3.5B7薄膜中均未能得到很好的面内单轴各向异性。4.斜溅射调控Fe75.5CulNb3Si3.5B7薄膜的阻尼因子:在沉积23分钟的不同斜溅射角度(30~320)下制备的Fe75.5CulNb3Si3.5B7薄膜中,从磁谱拟合得到的有效阻尼因子随倾斜角度的增大而增大,其数值从0.026增加到0.051。通过面外转角铁磁共振测试方法,得到倾斜角度在30-26°范围内时,本征阻尼因子大小保持在0.016左右,有效因子随倾斜角度的增加主要来源于外在阻尼因子;而当倾斜角度达到320时,本征阻尼因子为0.037,对有效阻尼因子的贡献主要来自本征阻尼因子。