基于e-Booster电动汽车线控制动跟随特性研究

来源 :广西科技大学 | 被引量 : 0次 | 上传用户:fangfei330654395
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科学技术的进步,汽车设计一直在迭代与创新,汽车性能与配置也在成倍增长。当前我国已成为汽车产销大国,但是随着汽车保有量的增加,因各种交通事故导致的人员伤亡、财产损失也在逐年攀升。汽车制动系统作为汽车基本的安全系统,其性能高低对汽车安全起着巨大的作用。此外,随着汽车电气化的不断发展,无人驾驶技术越来越成熟,主动制动技术在无人驾驶中不可或缺,且性能要求很高。线控制动系统不仅可以满足传统制动的要求,同时可以集成多种主动安全系统,满足电动汽车无人驾驶主动制动的性能需求。本文围绕“基于e-Booster电动汽车线控制动跟随特性研究”这一课题展开研究,主要研究内容如下:(1)剖析e-Booster线控制动系统方案及其工作原理,介绍e-Booster线控制动系统控制器架构及控制器关键电路模块。根据国内外制动法规,对乘用车制动系统性能评价指标进行概述,提出e-Booster线控制动系统制动系统性能要求。(2)对e-Booster线控制动系统个关键结构建立对应的数学模型,包括无刷直流电机数学模型、减速传动机构数学模型、制动主缸数学模型、制动踏板数学模型、制动管路数学模型、制动轮缸数学模型等。(3)对e-Booster线控制动系统制动主缸液压力控制策略进行研究,对比单环控制和双环控制以及三环控制,设计合理的无刷直流电机控制器。在制动主缸液压力控制上,设计相应的控制策略,并对该控制策略进行仿真分析,保证实际主缸液压力能够快速稳定的跟随目标主缸液压力。利用MATLAB/simulink工具搭建了e-Booster线控制动系统在数学模型下的仿真模型。(4)搭建e-Booster线控制动系统线控制动试验台架,分析e-Booster线控制动系统参数及性能降级策略。针对常规制动模式、主动制动模式、失效制动模式、阶梯增减压模式,在约束条件下对e-Booster线控制动系统制动主缸液压力跟随响应特性进行台架试验,并对试验结果进行整理。分析e-Booster线控制动系统主缸液压力的跟随特性,包括液压力响应及其鲁棒性,同时验证制动主缸液压力控制策略的可行性。
其他文献
学位
学位
作为水声传感器网络(Underwater Acoustic Sensor Networks,UASNs)核心组成部分之一的介质访问控制(Medium Access Control,MAC)协议,其作用是实现多节点对信道的共享,同时防止节点在进行传输时发生冲突。UASNs中的混合MAC协议实现了对不同种类MAC协议的融合,处理更加复杂网络负载的情况。但如何适应UASNs中动态变化网络负载是混合MAC
针对船用二冲程低速柴油机的能量利用情况,对船用柴油机余热利用的情况进行了简要的介绍。由于船用柴油机排气温度处于中低温的范围(300℃以下),容易导致常规的朗肯循环热力性能不高的问题。而Kalina循环技术可有效的回收中低温余热,在生产工艺中有实际的应用,因此有必要研究Kalina循环在船用柴油机余热回收中的应用方案,故本文主要做了以下几个方面的工作:(1)根据船用柴油机排气温度的范围,对不同Kal
汽车转向系统是连接驾驶员与汽车之间的枢纽,获取准确的路感对汽车主动安全技术起着重要作用,同时线控转向技术的出现给汽车转向系统带来了新的发展,能为驾驶员和车辆提供了更方便和安全的高速公路驾驶。由于线控转向系统中不能通过机械结构传递转向信息,路感需要模拟产生,因此一个好的路感规划对于汽车转向系统是极其重要的。针对该问题,本文对线控转向系统的路感规划展开了研究。针对汽车在实际行驶中汽车状态参数影响路感获
随着能源枯竭和全球温度的上升,电动汽车成为解决该问题的最佳方式之一,因此近些年电动汽车发展迅速。车载辅助DC-DC变换器作为电动汽车高压动力电池和12V蓄电池、低压设备的桥梁,对其转换效率和功率密度的要求也不断提高。虽然提高开关频率能够提升变换器的功率密度,但传统的硅器件由于其自身特性限制了其更高的开关频率。高效功率器件—GaN、Si C由于其寄生参数小、开关速度快、开关损耗小等优势,对提高车载辅
随着近年来对资源依赖性的不断增加,同时由于陆地资源的大量消耗,人们加大对水域资源的探求力度,因此对船舶作业能力提出了更高的要求。小型无人水面船(USV)由于其无人化、小型化和智能化使得其在执行水域任务时得到更多的青睐,但在面对复杂水域探索和监测任务时,表现出单一船体在任务执行过程中的不足,如船体续航能力有限、船体可搭载的传感器设备有限等问题。为解决该问题,本文采用多艘USV,构成任务执行的一个整体
随着社会的发展,燃油消耗和尾气排放越来越受到人们的关注,减轻汽车车身及零部件的质量,实现汽车轻量化成为当下汽车制造业讨论的热点。内高压成形工艺相比较锻造、冲压等传统工艺,提高了生产效率,降低了生产成本。除此之外,液压成形零件多为一体成形,不仅减轻质量,而且强度和刚度得到提升。管材内高压成形技术在制造后悬架、汽车各类连接管、连接管件、扭力梁等具有空间异形截面特征的汽车零部件具有优势,这推动管材内高压
转向系统是汽车内部重要的系统之一,而线控转向系统作为一种融合了高端的信息技术、控制技术、电子技术的新型转向系统,是发展无人驾驶模式的关键部分。此系统取消了转向盘和前轮转向机构之间的机械连接,采用电信号完成转向盘和转向机构的信息交换。由于线控转向系统摆脱了传统转向系统的诸多限制,能够自由设置系统的角传动比和力传动比,为汽车的转向特性提供了更大的设计空间,因此可以更好的实现主动转向功能,提高了驾驶的安
经济发展与环境污染的矛盾日益凸显,电动汽车的研究和发展势在必行,我国正不断加大以电动机作为行驶动力的电动汽车的研究,电子差速控制作为电动汽车内电子控制技术的关键一环同样受到重视。在现在市面上销售的三轮电动车中,即使是中高档的产品,也仍旧使用效率低下的机械传动系统,造成较大的能量损失,将电子差速控制加以应用就可以解决这一问题,可以对现有的三轮电动车产品进行升级换代,也可以为电动轿车、电动货车等车辆提