FeOCl及其改性材料非均相催化降解盐酸四环素和诺氟沙星的研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:susan222
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技社会的发展,抗生素类药物大量使用并排放到自然水体中,对生态环境和人体健康造成严重危害。而目前大多数用于降解抗生素的非均相芬顿催化剂仍然存在一些问题,例如仅在酸性条件下才能降解,或需要额外条件如超声波和紫外光。而FeOCl材料在中性p H条件下对H2O2仍然具有催化效果,将FeOCl作为非均相芬顿催化剂降解抗生素有望解决这些问题。本研究中通过部分热分解法成功制备FeOCl材料和改性Mn-FeOCl,并分别作为非均相芬顿催化剂降解盐酸四环素和非均相光芬顿催化剂降解诺氟沙星。论文的主要研究内容如下:(1)通过部分热分解法成功制备FeOCl。通过XRD、XPS、SEM对FeOCl进行表征。研究了影响盐酸四环素降解效率的关键因素,包括初始p H值、催化剂投加量、盐酸四环素浓度和过氧化氢浓度。结果表明FeOCl/H2O2体系能够高效降解水体中的盐酸四环素。降解60 mg/L盐酸四环素的最佳条件为:FeOCl投加量为350 mg/L、过氧化氢浓度为5 m M、初始p H为4.0。在该条件下,反应60分钟,盐酸四环素去除率为92.9%。并且p H适用范围广,在酸性到中性范围内对盐酸四环素都具有较高的去除率。FeOCl材料稳定性和重复性良好,重复使用5次后,盐酸四环素的去除率依然可以达到87.9%。对FeOCl/H2O2体系的反应动力学进行分析,结果表明对盐酸四环素的降解符合二级动力学模型。通过HPLC-MS确定了盐酸四环素降解过程中的10种中间产物,并给出了两种可能的降解途径。通过自由基淬灭实验和ESR实验,验证了·OH为降解过程中的主要自由基,并给出了反应机理。(2)通过部分热分解法成功合成Mn-FeOCl。通过XRD、BET、SEM、TEM、XPS、PL和UV-Vis DRS等表征手段分析了催化剂的性质。结果表明Mn的掺杂增加了FeOCl催化剂的比表面积,改善了FeOCl的光生电荷分离效率。对不同Mn/Fe比例的Mn-FeOCl进行对比,当Mn/Fe摩尔比为3:10时,Mn-FeOCl的反应速率最快,其反应速率k2是未改性的FeOCl材料的2.3倍,为0.0044 L·(mg·min)-1。在反应溶液初始p H为5.0,Mn-FeOCl投加量为500 mg/L,过氧化氢浓度为5 m M时,Mn-FeOCl非均相光芬顿降解诺氟沙星速率最快。在该条件下,反应80分钟,诺氟沙星去除率为91.3%。通过自由基捕获实验以及ESR实验确定了非均相光芬顿过程中产生了·OH、·O2-和空穴h+,并且·OH自由基对诺氟沙星的降解起主要作用。
其他文献
厌氧颗粒污泥膨胀床(EGSB)反应器属于第三代高效厌氧反应器,具有较好的研究应用前景。然而,当前研究对EGSB反应器的污染物传质及分布关注较少,而污染物的分布影响微生物生存环境,进而影响反应器的处理效率。构建CFD-厌氧消化耦合模型,对EGSB反应器内部流场和浓度场进行模拟,以生物死区宽度、污染物浓度标准差和污染物去除率为指标,研究污染物分布均匀性及其对处理效率的影响,进而对反应器进行优化。首先构
论文采用共沉淀法制备系列硝酸根型LDHs,再焙烧制得相应的LDO,考察并确定了制备工艺条件;以K2Cr2O7溶液模拟含Cr(Ⅵ)废水,以所制备LDO对其进行处理,考察并优化了吸附脱除工艺条件;对吸附Cr(Ⅵ)饱和的LDO进行了再生,考察并优化了再生工艺条件,初步探讨了解吸再生机理。对模拟废水中Cr(Ⅵ)离子吸附脱除过程的吸附热力学、吸附动力学进行了研究,初步探讨了其吸附脱除机理。论文主要研究结论如
厌氧氨氧化(Anammox)工艺因拥有成本低和效率高等优点,应用前景十分明朗。但该工艺目前存在许多缺陷,如启动时间长、稳定性差等问题。基于生物载体的污水生物处理工艺可以有效保存生物量,具有更强的抗冲击负荷能力,以此来加速Anammox工艺的启动和稳定运行。常用的生物载体如惰性有机载体由高分子材料制备而成,但这类生物载体存在一些问题,例如结构光滑、表面呈疏水性和电负性、生物亲和性差,导致其不利于挂膜
藻类可以吸收二氧化碳产生氧气供给好氧细菌利用进行有机物氧化,同时可以吸收污水中氮、磷等元素。若将藻类和活性污泥耦合,则可以降低活性污泥曝气所需的能耗,同时解决藻类沉降性能差、回收率低、资源浪费等缺点。本研究研究混合及曝气对菌藻系统处理废水的影响,探究菌藻耦合的可行性,同时在ASM3基础上构建菌藻共生数学动力学模型,进行敏感性与不确定性分析,研究模型参数选取对模型输出结果及敏感性分析的影响,最后基于
重金属镉对生物有毒害作用,不仅减缓植物的生长发育,同时可以随着食物链的传递而富集,从而给动物带来不可逆的伤害。本研究发现拟南芥AtERF5基因参与调节植物响应镉胁迫,并对其响应镉胁迫的潜在分子机制进行了探讨,主要结果如下:1.AtERF5基因缺失突变体erf5-1对镉耐受;用AtERF5基因回补突变体植株erf5-1,镉耐受表型消失;AtERF5基因过表达植株对镉胁迫敏感,综合上述表型得出:AtE
碱性含铜蚀刻废液是印刷电路板蚀刻工序过程中产生的废弃物,其主要成分为Cu(NH3)4Cl2、氯、氨氮,如不经妥当处置就直接排放,不仅浪费了宝贵资源,而且对环境造成巨大伤害。该废液的无害化处理受到了人们的广泛关注。本文研究了以碱性含铜蚀刻废液为原料制取碱式碳酸铜、活性氧化铜、氯化钠的工艺,探索了氯化钠处理玻璃减薄蚀刻废液回收氟硅酸钠的工艺,试验确定了各产品制备的最适宜工艺条件,并对活性氧化铜生产过程
本文以生物质废弃物为碳载体,通过简易浸渍-热解法合成了负载型生物炭催化材料。选取典型偶氮染料金橙II(Orange II)以及重金属六价铬(CrVI)为目标污染物。构建基于过一硫酸盐(PMS)新型类芬顿(Fenton)氧化技术以及基于甲酸(FA)新型化学催化还原技术反应体系。揭示复合催化材料结构的形成、演化规律以及控制步骤,诠释生物炭材料组成成分、微观结构与催化反应性能之间的构效耦合关系,阐明催化
湿式空气氧化(WAO)技术是一种高级氧化技术,但由于其条件苛刻,应用受到了限制。催化剂的加入可大大降低了其反应条件,因此催化湿式空气氧化(CWAO)应运而生。然而CWAO反应的温度和压力仍然高于常温常压。为了进一步降低能耗,寻找更温和的条件,本课题组将阳极电场应用于CWAO工艺中,并提出了电助催化湿式空气氧化(Electro-assisted catalytic wet air oxidation
随着社会的高速发展,越来越多的人口完成城镇化。而由于土地资源的紧缺,为了满足居民的住房要求,各种不同布局的城市建筑群层出不穷。本文采用CFD数值模拟的技术,从建筑群结构以及环境因素两个角度出发对街区内部流场及浓度场进行研究。首先本文总结目前国内外对建筑群内部街区风环境及污染物扩散研究的现状,介绍了有关风洞实验和数值模拟的基本理论知识;然后对前人所做的有关建筑群的风洞实验进行数值模拟验证,将计算结果
探索高效稳定的非贵金属催化剂用于净化各种持久性难降解污染物是一个重大挑战。本文设计并制备出金属有机骨架衍生碳基催化剂(Fe-Cu@N-C和FeS2/C@PVDF),通过构建 Fe-Cu@N-C/PMS、Fe-Cu@N-C/HCOOH 和FeS2/C@PVDF/PMS反应体系,揭示碳基材料催化氧化及催化还原反应机制,阐述净化过程,探究材料结构与性能间的关系,探索水体中持久性有机污染物和重金属离子污染