论文部分内容阅读
活性炭纤维(Activated carbon fiber,ACF)是纺织材料转化而成的活性炭产品,是纺织品制造和聚合物热化学工艺技术融合的产物。得益于ACF的独特孔结构和纤维形态使其具有出色的吸附性能、电学性能、催化性能、热学性能等。并且,由于ACF独具纺织品样态,相较于粉末活性炭和颗粒活性炭在装载、贮存、运输等方面更具优势。目前,市售ACF产品中最大的品类是粘胶基ACF。随着环境保护要求的日益严格,传统粘胶纤维的低成本优势不断被削弱。同时,不断累积的废旧棉纺织品也意味着巨大的低成本纤维素资源亟待开发。因此,采用棉纤维作为ACF制造原料的成本障碍可能被打破。而当前,对于棉基ACF的研究较少且不够深入,基础研究和工业实践都呈现准备不足的状态。在制备工艺与产物结构特征的关联性,以及对性能的影响上有许多的问题需要认识与解决。鉴于此,研究棉基ACF的制备与影响因素、探索新的制备工艺、探讨制备条件与产物结构特征的关联、比较棉基ACF与粘胶基ACF的异同点、评价棉基ACF的应用性能等具有重要的意义。本文以研究制备工艺对于棉基ACF物性的影响为出发点,采用均匀设计法和单因素实验法,探讨了加热温度、磷酸浓度和炭化时间在内的多个因素对于棉基ACF孔结构和产物得率的影响。棉基ACF孔结构受各因素的影响程度大小为加热温度>磷酸浓度>炭化时间,而产物得率则主要受加热温度影响。采用光学显微镜图像分析、热重分析和STA-GC/MS同步热分析等技术阐明了磷酸在棉基ACF制备中的作用机制。磷酸在棉基ACF制备中发挥了多重的作用,主要有促进水解、催化脱水、交联、促进芳构化以及成孔。确立的制备条件为:加热温度600℃,磷酸浓度50wt.%,炭化时间2h。本文在探索棉基ACF的制备新工艺时采用了微波技术,确认了微波作用下制备ACF的可行性。采取高效微波吸收材料转化利用微波能的策略,在SiC帮助下完成微波条件下的棉的炭化和活化。使用正交实验法,研究了包括炭化温度,阻燃剂浓度,活化温度,CO2流量和活化时间在内的5个因素对于孔结构和产物得率的影响。其中可能的工艺原理为:炭化过程中SiC容器是将微波能转换为热能并传递给了棉完成热解。而活化过程中除了SiC转化传递的热能,曝露在微波辐照下的碳纤维也能被微波加热,其自身也成为一种微波吸收器来提供Boudouard反应的热能。实验确立的制备工艺条件为炭化时间550oC,(NH4)2HPO4浓度8wt.%,活化温度600oC,CO2流量25mL/min,活化时间30min。对棉基ACF化学结构特征的研究包括元素组成、表面官能团和原子结构。运用的技术主要有X射线能谱(EDS)、X射线光电子能谱(XPS)、傅里叶红外光谱(FT-IR)、透射电镜(TEM),X射线衍射(XRD)和拉曼光谱(Raman)等。棉基ACF在元素组成上最主要的是C元素,还包括少量的O元素以及可能残留的P元素,并且与粘胶基ACF基本是一致的。FT-IR和XPS分析均表明棉基ACF表面除C=C键外还存在含氧基团。TEM分析表明棉基ACF的微观形貌为片层结构主体中呈现无序的结构,而部分区域则呈现有序状态。经计算,棉基ACF的(002)晶面和(100)晶面的晶面间距分别为3.8?和2.1?,晶粒尺寸分别为9?和12.5?。棉基ACF的拉曼光谱中存在较为明显的D峰和G峰,其拟合适合使用洛伦兹方程。制备过程中,温度的升高将引起棉基ACF微晶结构无序程度的增强。研究还发现棉基ACF的XRD数据与拉曼光谱存在一定的相关性。棉基ACF的物理结构特征研究主要从物理形貌和孔结构着手。使用扫描电镜(SEM)获取包括棉基ACF织物结构、单纤维横向和纵向形貌图像,并和粘胶基ACF进行了比较。棉基ACF具有类纺织品的组织结构,并且单根碳纤维的横向形貌呈现腰圆形和类中腔结构,而纵向形貌呈扭曲状。棉基ACF的上述形貌特征都与棉纤维类似,而与粘胶基ACF表面的沟槽形貌完全不同。对于棉基ACF孔结构的研究主要由物理吸附仪完成N2和CO2吸附等温线测定以及回滞环扫描。由测定的等温线数据,采用不同模型的解析计算获得包括比表面积、孔容积、微孔比表面积、微孔容积、孔径分布等孔结构信息。解析过程中的选点方式及模型选择对于计算结果的影响做了探讨。N2@77K条件下测定的棉基ACF吸附等温线属于Ⅰ(b)型吸附等温线,并能观察到吸附分支和脱附分支分离形成回滞环现象。采用优化选点方式得到的BET比表面积计算结果要优于固定选点方式,线性拟合的R2值和保证C值>0是确保结果准确的关键指标。比较发现,棉基ACF基于氮气吸附等温线的孔径分布适合选择QSDFT模型。通过高分辨孔径分布图可以发现,棉基ACF的孔结构丰富,主要为微孔与超微孔,并有少量介孔,且孔形状则可能主要为狭缝形。而单一的H4型回滞环也同样表明棉基ACF孔结构主要为狭窄裂隙孔,并存在局域网络联通和孔道阻塞的结构特征。对于棉基ACF的吸附性能应用与评价则通过动态苯吸附、水蒸气吸附和水中染料KN-R动态吸附来进行。研究了在气相或液相下不同吸附质在棉基ACF上的吸附行为,评价棉基ACF对于几种典型吸附质的吸附性能。并且,对于吸附行为中吸附性能与棉基ACF孔结构的关系以及可能的吸附机制做出了探讨。实验表明,棉基ACF具有良好的动态苯吸附性能,动态苯吸附值为828mg/g(293K,p/p0=0.175),微孔体积与动态苯吸附值之间有很大的关联性。棉基ACF对水蒸气的吸附能力较强,平衡吸附量为693cm3/g(273K)。采用FHH模型分析的分形维数D为2.75,证明棉基ACF的表面较为粗糙。静态水吸附可以一定程度上反映ACF的BET比表面积特征。棉基ACF对染料KN-R的吸附量为28.4mg/g。吸附等温线较符合Langmuir模型,而吸附动力学采用Largergren准一级模型拟合的更好。在较低初始染料浓度能较快达到吸附平衡,表明棉基ACF在处理液相中低浓度吸附质具有优势。