基于一阶段目标检测算法的研究与改进

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:kmask
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目标检测是计算机视觉领域里一项十分重要的任务,在交通、医疗、国防等领域有广泛的应用。深度学习的引入使得目标检测算法获得了巨大的进步,目前基于深度学习的目标检测算法在精确度与速度上已经大幅超越传统算法,成为本领域的主流。本文针对目标检测算法所存在的一些困难,在经典的一阶段目标检测算法SSD的基础之上,进行了一系列的研究工作。本文的主要内容如下:目标检测任务是一种多尺度的任务,使用来自网络中不同深度的特征图进行检测能够有效缓解多尺度对检测带来的困难。但浅层的特征图的语义信息较弱,直接使用浅层特征图用于检测可能会影响检测的效果,尤其是小目标的检测。本文提出了一种基于语义强化与特征融合的目标检测器。该检测器在SSD检测算法的基础上,引入了一个用于增强网络浅层特征图语义信息的小型卷积分支网络,并为该分支设计了额外的训练任务。此外,使用了一种轻量的特征图结合方法,能够有效结合多种尺度的特征图。PASCAL VOC与MS COCO数据集上的实验结果表明该模型实现了较优的检测性能。FPN是目标检测算法中常用的网络结构,用于将网络深层的信息流入浅层。本文提出一种双向FPN结构,在FPN自顶向下与横向连接的基础上增添了自底向上的分支。此外,针对目标检测后处理过程中定位更准确的边界框可能被分类置信度高的边界框所抑制的现象,本文对NMS算法进行了一定的改进,利用被去除的边界框调整所保留边界框的位置形状,使得其定位更加准确。将该双向FPN与改进的NMS算法应用于SSD目标检测器,在PASCAL VOC数据集上对该检测器进行的一系列实验表明所提出的双向FPN结构与改进的NMS算法能够提升检测性能。
其他文献
机器人执行抓取任务时,力传感器和力执行器是两个重要的工作部件,利用力传感器可实现力执行器的闭环控制,提升机器人的抓取智能水平。由于具有良好的延展性和安全交互性,柔性力学传感器和力执行器随着柔性电子技术的发展逐渐兴起,已成为智能机器人领域的研究热点。然而,目前相关研究集中于单一力传感器或力执行器件的研究,关于两者一体化集成的研究工作较少。此外,力传感器和力执行器使用的原理不同,信号转换复杂、集成度较
Cu2+在生理和病理事件中起着至关重要的作用,人体中Cu2+的不平衡会产生许多问题,比如人体中过多的Cu2+会产生多种肝脏或肾脏疾病,但是当体内Cu2+不足时,会使人们产生脑缺血从而患上神经衰退性疾病严重者甚至死亡。因此,开发一种用于Cu2+实时快速测定的高效方法具有重要的研究意义。鉴于现有的Cu2+检测技术精度较低、需要复杂的样品预处理和笨重的仪器、且检测时间久,无法满足实时检测等一系列问题的存
图像的风格迁移是一种重要的图像处理技术。风格迁移技术旨在通过一定的算法,将一张图片的内容信息与另一幅图片的纹理、色调、轮廓等风格信息相互融合,继而创造出一张全新的图像,与原图像相比,生成的图像在原有的内容信息不改变的情况下,风格却变得迥然不同。近年来,深度学习的快速发展以及其在图像处理方面的优异表现引起了研究者们的广泛关注,研究者们开始运用深度学习技术来研究图像的风格迁移问题,并取得了许多突破性的
近年来基于共轭聚合物超薄膜的有机场效应晶体管(OFET)成为气体传感领域的热门研究方向。由于超薄膜的厚度仅为几个单分子层厚,其用于气体传感可以增加OFET导电沟道与气体分子的物理接触面积,减少气体分子在有机半导体中的扩散路径,从而提高传感器件的传感性能。本论文围绕OFET超薄膜微观结构与电学、气体传感性能之间关系尚不清楚这一问题,以优化超薄膜OFET气体传感器制备工艺、提高OFET器件传感性能为目
作为人机语音交互的出口,语音合成的效果直接影响到人机交互的体验。一个高质量的、稳定的语音合成系统能够让机器更加地拟人化,使人机交互过程更加自然。目前,大多数很多优秀的致力于提高中性语音成的质量的TTS模型已经被提出,例如Tacotron2和Wave Net。但这些模型大多数使用的是RNN或者LSTM作为编码器和解码器,这种自回归的结构导致这些模型在训练和预测时很慢。此外,随着智能化语音合成系统的不
可变形卷积网络在计算机视觉任务中被广泛使用,在目标检测、语义分割、目标分类以及视频动作检测等多种领域中都展现出良好的性能。在可变形卷积网络中传统的卷积层和可变形卷积层都是计算复杂度的主要来源。然而现有的神经网络加速器主要集中于传统卷积层的优化加速任务,对于可变形卷积层的关注却很少。目前的研究工作中,一种较为常见的做法是通过修改算法,使可变形卷积算法适合在硬件上映射,但是这样的做法或多或少会使得可变
近年来,深度学习方法在计算机视觉领域取得了卓越的进展。然而,这些成就大都依赖于大量的标注样本,当训练样本不足时,深度学习很难发挥作用。为了解决深度模型在小样本情况下的学习问题,小样本学习被提出,旨在通过很少量的标注样本来学习到一个优秀的分类器。由于这一特性,小样本学习逐渐成为视觉识别中的一个受关注的领域。小样本学习的基本思想是从大规模数据集上学习可迁移的知识,并通过这些知识来帮助模型快速地学习到目
交通事故对道路交通安全造成了极大的威胁与挑战,分析事故成因模式对于减少事故发生数量,降低事故所造成的损失起到了积极作用。由于道路交通系统固有的复杂性,常见的自动化算法会显得不够灵活。可视分析通过交互的方式将领域专家的专业知识引入分析流程中,通过将机器智能与人类智能相结合的方式,提高了分析结果质量和效率。因此本文提出将道路交通专家的领域知识与机器智能通过可视分析方法结合至一起,迭代式优化分析结果的方
水下无线传感器网络作为一种探索和开发海洋的新方法,在人类不易接触的水下区域的探测和监测中发挥着重要作用。水下无线传感器网络已广泛用于海洋信息收集,地质灾害预防,资源勘探和军事监测等许多领域,是无线传感器网络领域研究的热点之一。在水下空间中传感器节点如何自主调整位置实现对目标事件的覆盖和监视是一个重要课题,它为网络拓扑、目标监测、数据路由等应用领域提供支持,是决定水下无线传感器网络服务质量和工作效能
图像分割是图像处理领域和计算机视觉领域中的关键技术之一。活动轮廓模型分割法因在医学图像等复杂图像的分割中取得了较好的分割效果而被广泛应用。医学图像大多为灰度不均的且含噪声的图像,基于区域的局部二值拟合活动轮廓模型有效解决了该类型图像的分割问题,但该模型中存在水平集函数演化效率低、分割效果易受噪声影响以及初始轮廓敏感等问题。本文针对以上问题进行改进并做出仿真,具体工作如下:1.针对模型分割效率低和易