【摘 要】
:
驾驶行为分析和风险预测对于道路交通安全、智慧城市、无人驾驶和金融保险等领域具有重大意义。随着汽车保有量的逐年增长,道路环境日渐复杂,交通安全问题越发严峻。为了保障道路交通中的生命财产安全,分析驾驶行为和预测风险已刻不容缓。然而,由于各种条件限制,现有的驾驶风险分析工作面临着若干挑战。首先,目前的一些驾驶行为分析和风险预测工作通常以粗粒度的方式来评价驾驶风险,缺少对驾驶行为进行细致描述并且无法发掘潜
论文部分内容阅读
驾驶行为分析和风险预测对于道路交通安全、智慧城市、无人驾驶和金融保险等领域具有重大意义。随着汽车保有量的逐年增长,道路环境日渐复杂,交通安全问题越发严峻。为了保障道路交通中的生命财产安全,分析驾驶行为和预测风险已刻不容缓。然而,由于各种条件限制,现有的驾驶风险分析工作面临着若干挑战。首先,目前的一些驾驶行为分析和风险预测工作通常以粗粒度的方式来评价驾驶风险,缺少对驾驶行为进行细致描述并且无法发掘潜在的危险行为;其次,他们通常不考虑驾驶员的驾驶风险在时域上的变化情况;第三,部分工作基于模拟行为数据或特定用户组(例如出租车数据)来分析驾驶行为,单一的数据特性使得建立的模型难以得到泛化。为了解决传统驾驶行为风险研究存在的问题,我们提出了一种细粒度动态分析系统-识别高风险驾驶员(Identifying High Risk Drivers,IHRD),该系统综合考虑了包括驾驶行为、车辆状况和道路状况等特征在内的高维时空数据,基于轨迹层面分析驾驶行为并针对驾驶风险构建动态风险模型。在轨迹层面对驾驶行为进行分析,能够得到更加细腻精准的预测结果并发掘出驾驶过程中潜在的危险特征。驾驶员动态风险变化模型可以适应驾驶风险在时域上的变化,从而动态精准地评估驾驶风险。我们的模型综合考虑GPS、车辆状况、道路状况和驾驶行为等特征,有效解决了数据局限性的问题。实验结果表明,与传统工作相比,相较于仅考虑GPS相关信息的情况,我们的轨迹风险分类模型可以将F1-Score提高25.55%,在回归模型上,平均绝对误差MAE降低了0.17。在精度提升的同时,我们的模型能够动态计算驾驶风险以及得到其在时域上的变化规律。此外模型还可以识别出Top-K个高风险驾驶员并得到其在驾驶过程中不规范的行为特征。特征影响结果表明对F1-Score影响较强的各类特征依次为急加速次数(10.0%)、急减速次数(9.04%)、总里程(7.37%)、平均大气压强(6.36%)、平均冷却液温度(5.51%)和震动报警次数(5.41%),通过识别这些高危特征并研究其影响,我们能够发现不安全驾驶事件并促进道路安全。
其他文献
乳糖是乳制品的重要组成原料,其相态转变会引起乳制品加工和贮藏过程中的许多问题进而直接影响产品的质量和货架寿命,例如乳粉或豆乳粉加工过程中经常出现的粉体结构塌陷、结块、风味散失以及相分离导致的溶解速率缓慢等均与乳糖的相态变化相关,因此,了解乳糖的相态转变机理对干燥乳制品加工具有极其重要的意义。本文通过量子化学计算发现α-和β-乳糖及α-乳糖一水合物晶体结构的分子振动会受到异构化和水分子存在的影响。基
目前正在使用的化石能源在地球上储量有限,并且是不可再生的,人们基于对化石能源过度消耗以及环境污染加剧的担忧,已经开发了各种用于存储和转化能源的新技术。锌-空气电池和电解水制氢被认为是未来最有潜力的实用技术之一。然而,由于多电子转移过程以及氧还原反应(ORR),氧析出反应(OER)和氢析出反应(HER)的动力学缓慢,因此非常需要开发先进的电催化剂来减少反应的过电势,加快反应动力学和提高转换效率。当前
具有高理论能量密度,低成本,高安全性等优点的可循环充放电锌-空气电池被认为是极具潜力的储能系统。设计合成出能降低反应过电位,提高电极反应效率,增强循环稳定性的廉价电催化剂是解决锌-空电池发展应用中所遇问题的关键。研究表明,将过渡金属纳米粒子包覆在石墨烯层或碳纳米管中能够为氧还原反应(ORR)和氧析出反应(OER)带来了非凡的活性和稳定性,从而使得该类非贵金属纳米催化剂替代贵金属催化剂成为了可能。在
中空结构微纳材料具有低密度、高比表面积和高孔隙率等优势,能缩短质子和电荷传输路径,因此在纳米催化、气体传感、药物载运和能量存储转换等领域得到广泛应用。集成多种材料的中空结构复合材料,组分间的协同效应能增强单一材料各自的功能。然而中空结构碳基材料的制备过程需要酸碱刻蚀,可能会导致复合材料特殊功能严重劣化。因此,寻找一种不需要蚀刻去除模板的新工艺是中空结构碳基材料实现可控制备的首要任务。本论文提出一种
人类对能源需求不断增长以及对由化石燃料燃烧引起的污染的担忧,正推动着先进能源存储技术的快速发展。锂离子电池具有体积比容量大,无记忆效应等优势被视为是极其重要的新型能源储存和转化器件。现在商业化的锂离子电池负极材料主要是石墨,但其过低的比容量(372 m Ah g-1),已不能满足当今社会发展对高能量密度材料的需求,因此,急需开发新型的负极材料。现今大量的研究工作主要聚焦于如何开发高比容量的材料,降
膜蒸馏(Membrane distillation,MD)是基于膜的热蒸发工艺的一种海水淡化技术,进料侧表面上蒸发产生的水蒸汽通过膜孔扩散到膜的另一侧,被冷侧循环水冷凝而实现脱盐。由于其高脱盐率、低成本和模块化设计等优点,具有广阔的应用前景。然而对于传统的膜蒸馏系统,其固有的温度极化现象(进料侧的膜表面的温度低于上部进料液体的温度),阻碍了其大规模的工业化应用。近年来,人们在传统MD技术中引入太阳
锂离子电池由于输出电压高、容量高、循环寿命长以及良好的环境友好性等诸多优点,经过20多年飞跃式的发展,已经成为便携式电子产品和其他清洁能源的储能电源。但是在动力电池领域的相关技术却未获得较大突破,因此开发可靠廉价的负极材料,对锂离子电池的发展至关重要。同时,因为锂硫电池有高的理论比容量(1675 m Ah g-1)和高能量密度(2600 Wh kg-1),并且硫来源广泛、价格低廉、环境友好,该体系
随着新型电动汽车和便携式电子设备的快速发展,对高功率、绿色、安全的储能设备的需求越来越大。锂离子电池(LIBs)以其高能量密度和稳定的电化学性能而备受关注,被认为是最具潜力的储能技术之一。目前商用石墨负极的理论容量较低(~372m Ah·g-1),限制了高能量密度LIBs的发展。因此,开发环境友好、高容量、具备优异循环及倍率性能的锂离子电池负极材料势在必行。四氧化三钴(Co3O4)因其理论比容量高
随着社会的快速发展,预计到2040年,全球上路汽车数量将达到20亿辆。交通安全事故渐渐成为城市交通系统发展的一大隐患,并成为儿童与青少年的首要死因,人们对于安全出行这方面也十分关注;伴随自动驾驶概念因素的加入,交通系统需要解决的安全与效率问题日益突出,如何使交通系统更加安全与高效率也一直成为学者们研究的一个大方向。路径推荐在智能交通是一个比较重要的应用,可以根据驾驶员的出行需求,所规划的路线也会有
可充电电池是我们现代社会不可或缺的一部分,可在多种应用中按需提供电能,其研发主要集中在锂离子电池技术上。与此同时,由于具有丰富的资源,低廉的价格,相似的化学性质,钠离子电池正逐渐成为能量存储的潜在候选者。然而,目前商业化的石墨负极因其较低的理论容量无法满足人们需求,因此,开发低成本、高容量的新型负极材料是研究的重点。最近,锑基材料(金属锑、锑基合金、锑硫族化合物及其复合材料)因其相对较低的价格和较