论文部分内容阅读
妊娠糖尿病是一种高危妊娠,对母亲和胎儿危害极大。现在,我国每百位妊娠期女性中就有十人患有该病,与十年前百分之三的患病比例相比,提高了三倍多。妊娠糖尿病患者的饮食、运动以及血糖情况,是医生比较关注的重要指标,每次问诊上述信息需要占用医生大量的时间。因此,如果建立一个糖尿病孕妇健康管理系统,通过其帮助孕妇随时随地采集饮食、运动等与糖尿病相关的信息,并自动分析它们之间的关系,应该可以帮助医生给出更符合患者自身情况的血糖控制建议。本文主要讨论这一系统中的饮食数据采集分析方法以及系统的具体实现。论文在数据集采集阶段,首先用MySQL数据库搭建食物营养信息数据库,然后采用MVC架构和JavaEE技术,实现让糖尿病孕妇随时随地输入每日饮食、运动、血糖等信息的微信服务号,通过其采集用户数据。此后医生可以通过用户输入的上述信息为用户提供个性化的健康指导。其中,在饮食数据采集模块,改变当前多数应用常用的手动输入食物名称及克数的方式,而是用户通过移动设备上传的食物图像,由系统自动识别和分析图片中食物的种类及能量,以降低用户输入信息的复杂程度。在数据分析阶段,通过上传的食物图像识别和分析用户摄取营养及能量的方法。本文创新地采用Faster RCNN目标检测的方法进行食物定位和识别。由于用户拍摄图片时,移动设备与食物的距离和角度不固定。因此,本研究使用人们经常会带在身边且尺寸固定的硬币作为标准参照物,即每次将硬币与食物同时拍摄图片然后上传。本研究首先建立包含硬币的食物图像库,库中包含20种菜的11000张图像数据。然后标记出图像中的硬币和食物的位置。接着通过图像库中的5500张图像训练Faster RCNN中的RPN层和ROI层,用剩余5500张图像做测试,进而识别食物种类和位置坐标,由坐标转换为面积。最后通过每种菜和硬币的面积的比值,计算食物重量并转换为对应的卡路里值,作为分析用户饮食数据的依据。