论文部分内容阅读
在我国西南地区的公路交通工程建设中,山岭隧道往往占据线路很大的比例,正在修建的九绵高速公路总长度244.03km,桥隧占比达到了81%,且较多标段隧道穿越可溶岩地区,复杂的岩溶地质条件会给隧道工程建设带来高风险,比如各种充填或无充填的溶隙、溶缝、溶洞带来的偏压塌方、涌泥突水、大变形等严重影响隧道的稳定性。在建的天池隧道围岩为典型的可溶岩体,洞身段灰岩岩体强度低,对隧道稳定性影响较大。以往的研究多注重岩溶不良地质对隧道开挖影响以及防治处理措施,对一般可溶岩体的变形位移和支护结构的监测分析较少,因此本文依托九绵高速公路天池隧道,通过建设过程中隧道围岩位移和支护受力监控量测、室内不同状态下的单轴和三轴压缩试验,以及数值分析等途径和方法,对天池隧道围岩稳定性进行了分析和评价。获得的主要成果如下:(1)通过对隧道洞壁周边收敛监测、累计曲线拟合、正态分布统计发现:Ⅲ级围岩拱顶下沉值和拱肩、边墙周边收敛值最小,拱顶下沉值范围在5.4mm~8.1mm之间,周边收敛值范围在4.8~9.6mm、4.9~10.4mm之间,前期位移速率小于2mm/d,稳定时间为28d,判定极限位移值为24mm、29mm、31mm;Ⅳ级围岩的拱顶下沉值范围在11.1~17.3mm之间,周边收敛值范围在13.1~18.8mm、15.57~21.8mm之间,前期位移速率小于4mm/d,边墙收敛值大于拱肩收敛值和拱顶下沉值,稳定时间为30d,判定极限位移值为52mm、56mm、65mm;Ⅴ级围岩的拱顶下沉值和周边收敛值范围最大,拱顶下沉值范围在15.4~24.1mm之间,周边收敛值范围在17.8~27.8mm、20.7~31.2mm之间,前期位移速率小于5mm/d,边墙收敛值大于拱肩收敛和拱顶下沉,稳定时间为35d,判定极限位移值为72mm、83mm、93mm。围岩内部位移监测表明,位移随距离洞壁深度的增加而降低,洞壁拱肩处位移值最大为14.5mm,最深处3.5m测点位移小于1mm。(2)对天池隧道Ⅳ级围岩进行支护结构受力特征监测,结果表明:初期支护与围岩的接触压力分布不均匀,右拱肩处压力最大,为0.31MPa,左边墙、左拱肩、拱顶、右拱肩、右边墙监测点压力占设计值的102.5%、41.5%、78.9%、105.4%、76.9%;钢拱架基本上处于内缘受拉、外缘受压状态,右拱肩部位受压应力最大,为19.0MPa,计算出轴力和弯矩均较小,拱顶、左拱肩、右拱肩、左边墙、右边墙监测点的安全系数分别为23、27、4、21、7,均大于规范安全系数;锚杆轴力多表现为受拉状态,最大轴力为34.3k N,测点轴力分布特征为“翘尾巴”型,表现为浅部轴力大于深部轴力,计算得左边墙、左拱肩、右拱肩、右边墙各锚杆测点的最小安全系数分别为7.6、4.3、6.7、8.0,锚杆发挥了加固围岩的作用,且在安全范围内。监测结果显示右拱肩部位安全系数小于其他部位,分析为该部位存在泥质充填,导致该区域围岩压力、钢拱架应力、锚杆轴力异于其他部位。(3)通过CDEM数值方法进行了天池隧道3种围岩级别不同开挖工况下的稳定性研究,分别讨论了应力、位移、塑性区范围、单元体损伤值、接触面破坏,支护结构监测等结果。研究表明,Ⅲ级围岩在上下台阶和全断面开挖均能保持稳定,模拟位移值与实际监测数据相符;Ⅳ级围岩在三台阶法和上下台阶开挖均能保持稳定,模拟位移值与实际监测最终稳定值范围相吻合;Ⅴ级围岩在三台阶法开挖下处于稳定状态,模拟位移值与实际监测最终稳定值范围吻合,上下台阶开挖法,洞壁位移及塑性区范围较大,处于欠稳定状态。(4)根据不同开挖工况数值分析结果以及与现场监测结果对比,进行了天池隧道开挖和支护优化模拟。结果表明,采用上下台阶开挖及支护能够满足天池隧道Ⅲ、Ⅳ级围岩的安全与稳定,但对Ⅴ级围岩强度低区段不适用。Ⅲ级围岩采用全断面开挖可行,围岩和支护结构满足安全性,而且锚杆用量和喷射混凝土厚度可在原设计基础上适当减少。Ⅳ级围岩建议采用上下台阶开挖,锚杆长度采用2.5m,并可适当较小喷射混凝土的厚度为20cm。Ⅴ级围岩强度低区段建议采用上下台阶预留核心土方式开挖,锚杆长度采用3.5m,增大喷射混凝土厚度至30cm,减小钢筋网间距到15cm。