【摘 要】
:
本文主要研究如何利用DHOST理论在解决反弹/浮现宇宙学中的不稳定性问题。本文在简并高阶标量张量理论(DHOST)的框架下,利用单一标量场与引力的耦合,研究了一类新的非奇异反弹宇宙学理论。在该类理论中,原本在标量-张量理论和Horndeski/Galileon理论中广泛存在的非奇异反弹宇宙学中的梯度不稳定性被DHOST理论中新算符带来的效应取代,这源自对于扰动色散关系的修正。计算结果表明,当原初扰
论文部分内容阅读
本文主要研究如何利用DHOST理论在解决反弹/浮现宇宙学中的不稳定性问题。本文在简并高阶标量张量理论(DHOST)的框架下,利用单一标量场与引力的耦合,研究了一类新的非奇异反弹宇宙学理论。在该类理论中,原本在标量-张量理论和Horndeski/Galileon理论中广泛存在的非奇异反弹宇宙学中的梯度不稳定性被DHOST理论中新算符带来的效应取代,这源自对于扰动色散关系的修正。计算结果表明,当原初扰动在反弹阶段演化时,这一类反弹图像确实可以避免不稳定性。因此,在Horndeski/Galileon框架下非奇异反弹宇宙学所禁止的理论可以在DHOST理论中被巧妙地规避。为了计算标量扰动和张量扰动的功率谱,本文采用了一个反弹宇宙学图像的普适参数化方法。我们证明通过热收缩相由真空涨落产生的标量扰动总是会产生偏蓝功率谱,因此被观测排除。如果在热收缩相之前引入物质收缩相,或者引入某种热气体作为标量扰动的起源,可以得到标量功率谱的标度不变性。在这两种情形下,我们预测了标量扰动的振幅和张标比。选择合适的模型参数,我们证明结果可以与天文观测数据吻合。因此,如果引入上述两种机制之一,那么该模型是可以符合观测限制的。本文从DHOST宇宙学出发,展示了一类新的宇宙学图像。和Galileon起源一样,这类宇宙学模型在无穷远处同样是渐进闵可夫斯基的,但是在晚期演化为辐射主导时期,因此,该模型有一个巧妙的结束机制,这在标准的Galileon起源中是不存在的。我们分析了宇宙学扰动的行为并证明了标量模式和张量模式都可以从梯度不稳定性的问题中被解决。并进一步分析了在多种条件下产生的原初标量功率谱,探讨是否存在某种尺度不变性。
其他文献
在当前能源危机和环境污染的大背景下,社会对于清洁能源和储能载体的需求不断扩大,锂离子电池产业迅速发展。镍钴锰(NCM)三元锂离子电池具有能量密度高、循环性能好、制造成本低等优势,发展势头迅猛,应用范围不断扩大。然而,NCM三元锂离子电池安全性较差,其偶发的“热失控”故障往往导致严重的安全事故。此外,使用状态下的电池安全事故频频发生,如高倍率放电等过程中发生的火灾爆炸事故,给人们的生命和财产安全带来
红外发射率是材料的一个重要物理性能,其数值高低对物体的红外辐射(热辐射)行为有很大影响。物体的红外辐射主要由其表面层的红外发射率决定,为了改变材料的辐射特性且兼顾该材料的其它性能,通常在其表面涂覆具有特殊发射率的涂层来改变其红外辐射性能,实现材料在特定场合的应用。红外功能涂层主要分为高红外发射率和低红外发射率涂层两类。高红外发射率涂层主要有两个应用领域:一是作为航天器TPS(热保护系统)最外层材料
癌症作为影响人类健康的“头号杀手”,探索持久且有效的治疗方式成为医学界的重要攻关方向。目前癌症的主流治疗方式包括手术、化疗和放疗,但是这些传统治疗方式在治疗效果上都存在固有缺陷。纳米催化治疗作为一种新兴的治疗手段,能够对肿瘤实现精准的杀伤并且不损伤正常组织,正受到广泛关注。亚铜基纳米催化材料在肿瘤微环境(TME)中能够促进羟基自由基(·OH)的生成和抑制谷胱甘肽(GSH)的过表达,进而提高化学动力
随着锂离子电池在电动汽车上的推广应用,重量轻、高续航的车辆需求推动了动力锂离子电池能量密度和尺寸的增加。大幅面高比能软包锂离子电池及其装配而成的电池包因具有能量密度高的优点受到市场青睐。然而,此类电池热失控引起的相关安全问题仍是制约发展的最大阻碍。当前国内外研究多集中于小容量圆柱型或方型电池,采用的研究方法能否适用于大幅面高比能软包电池还需进一步研究;且高比能的高镍电池(LiNi0.8Co0.1M
本文是对黎曼面上奇异双曲度量的研究,主要包含下面两个部分。一方面,我们用两种方法给出了双曲度量在孤立奇点附近的局部模型。即我们证明了在孤立奇点附近存在复坐标z,使得度量的表达式要么为(4α~2|z|2α-2/(1-|z|2α)~2)|dz|~2,其中 α>0,要么为 |z|-2(In|z|)-2|dz|~2。另一方面,我们提出了下述猜想:位势理论意义下的非双曲型黎曼面上的奇异双曲度量的单值化群在P
页岩作为典型的沉积岩广泛存在于自然地层中,受层理和裂隙发育的影响,各岩层力学性能差异大,页岩体中的地下工程结构易发生变形破坏,严重影响着工程结构的稳定性。页岩矿床开采采场围岩的变形规律、应力分布、损伤特征是影响矿床开采安全的主要因素。因此,借助理论分析、物理相似模拟试验和数值模拟试验等手段,研究采场变形特征、应力状态、破坏模式和支护形式,是页岩矿床安全开采的岩体力学关键问题。以某典型缓倾斜页岩矿床
电子显微成像的结果有时不那么直观,通过模拟研究可以从有限的结果中获得更多的信息。本论文就透射电子显微镜成像模拟方法进行了介绍,研究了离焦、像散下电镜的成像。另外,在多层法基础上提出了全空间力学分析,并将其应用在电子束对样品力学作用的研究中。首先,文中给出了一套模拟离焦图像并通过与实验图像定量对比优化参数的研究方案,分析了带电纳米线在大离焦量下的成像机制,为复杂情况下,共轴全息技术在荷电测量上的应用
镁合金是目前密度最轻的金属结构材料之一。其在电子产品、交通运输、航空航天等领域有着广阔的前景。然而目前镁合金的实际应用与其优异的性能所能达到的预期还有较大的差距,这主要是因为镁合金作为结构材料强度仍然较低。而Mg-Gd系合金是镁合金中强度最高的体系之一,对其成分和制备工艺优化是提高性能最有效的方法。基于以上背景,本文选择Mg-Gd系合金作为研究对象,通过添加Sm以及Zn元素,并采取不同的变形和热处
Fogging is always a significant problem for agricultural films,where fog may reduce the light transmission resulting in an adverse effect on the yield and quality of crops.Many reports have been discl
聚酯玻璃钢具有密度低、热绝缘能力优异、机械性能好、成本相对较低以及易加工等特性,被广泛应用于高速列车的墙板和顶板等部位。然而,聚酯玻璃钢的基体材料不饱和聚酯树脂具有较高的可燃性,当列车内发生火灾时,其他内饰材料燃烧产生的高温热辐射会导致聚酯玻璃钢发生热解,着火后火焰会迅速蔓延至整个车厢。此外,高速列车运行环境复杂多变,由于海拔和气压等环境因素的影响,聚酯玻璃钢可能处于高氧或低氧环境。因此,深入认识