131I甲状腺癌症治疗的辐射防护研究

来源 :黑龙江大学 | 被引量 : 0次 | 上传用户:rdhbrth565657ki
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
进入二十一世纪以来,人民的生活水平不断提高,但是癌症仍然是威胁人类健康的最严重的疾病之一。甲状腺癌症占所有癌症的比例大约为1%,131I核素治疗是治疗甲状腺癌症最重要的手段之一。
  131I核素治疗时,病人需要服用含131I的药物,131I进入人体后会在人体内停留一段时间,自身相当于一个移动的放射源,所以病人的住院病房应当进行合理的辐射屏蔽。本文用公式计算了核医学科病房的防护厚度,为病房的建设提供了参考方法。病人的各器官组织也会受到体内131I核素的辐射,本文推导出了131I治疗时各器官组织内照射的有效剂量随时间变化的方程,为核医学科医生提供剂量参考。病人体内的131I核素大约有70%会通过排尿过程进入到衰变池中,因此衰变池也要进行相应的屏蔽,本文完善了体源的剂量率计算公式,运用MATLAB计算出了减弱函数G1(k,p,μ0R,0),使体源的剂量率计算公式可以运用到衰变池的计算中;在屏蔽厚度的计算中,推导了适用于体源的减弱倍数法公式,同样运用MATLAB计算出适用于衰变池计算的减弱函数G1(k,p,μ0R,0),找到了一种衰变池屏蔽厚度的普适计算方法,并用MCNP对计算结果进行了验证;使用该计算方法,计算得到了核医学科排水管道的屏蔽厚度。
其他文献
同步辐射具有高亮度,能量连续可调的特性,是人们进行材料物质研究的理想光源。软X射线的光子能量覆盖常见轻元素K边和过渡族金属的L边,同步辐射软X射线实验方法的发展对材料科学具有重要的意义。  本文根据北京同步辐射装置489B实验站对软X射线吸收谱实验方法拓展的需要,进行了荧光产额吸收谱设备的设计搭建工作。以微通道板(MCP)为光电探测和倍增元件,选择光子计数法为读出方式,设计制作了一种实用的超高真空
作为放射性治疗肿瘤的一种,质子治疗因其独特的物理特性,使其在某些特定肿瘤的治疗方面具有一定的优越性,同时其优越的术中治疗感受、术后生活质量和较高的生存率,使其成为目前放射性治疗的一个焦点。中国科学院上海应用物理研究所与上海市瑞金医院合作共建国内首台质子治疗装置APTRON,目前装置处于认证阶段。  作为基于同步加速器的质子治疗装置的核心部件之一,质子直线注入器通常由质子源、低能束线、RFQ直线加速
上海光源(Shanghai Synchrotron Radiation Facility,SSRF)是中国现已建成并投入运行的唯一一台高性能第三代同步辐射光源,其主体由三台电子加速器构成:150MeV直线加速器、3.5GeV增强器以及3.5GeV电子储存环。电子储存环中运行的束流通常由多个独立的束团组成,传统的束流诊断系统测量的是多束团的平均参数(例如全环闭轨、逐圈平均横向位置、逐圈平均相位等),
基于中国科学院近代物理研究所重离子研究装置(Heavy Ion Research Facility at Lanzhou,HIRFL)和重离子冷却存储环(Cooler Storage Ring,CSR)提供的重离子束,应用于肿瘤放射治疗具有物理学和生物学两方面的优势。重离子放疗已被证明是放射治疗当中最先进有效的技术之一,成为放疗领域的最前沿。在甘肃武威建成的国产重离子治癌装置(Heavy-Ion
增强器(BRing)是强流重离子加速器装置HIAF的核心部分,需要提供高流强束流,例如1×1011ppp的238U35+、3×1011ppp的78Kr19+和6×1012ppp的质子,纵向束流集体效应可以导致束流品质变差甚至导致束流损失,因此是HIAF设计阶段必不可少的研究课题。为了在较小空间上提供较高高频电压,同时覆盖重离子束流加速过程中的频率变化范围,BRing采用了具有低Q值的磁合金加载腔。
RFQ加速器由于具有很好的聚焦、聚束和加速能力,被广泛的用作为高能加速器的注入器。RFQ加速器主要有两种射频结构,一种是四杆型结构,另一种是四翼型结构。四杆型RFQ主要用于低频率段,由于其水冷结构的复杂性,大多数四杆型RFQ只能在低占空比运行。四翼型RFQ主要用于高频段,由于结构的对称性使其水冷系统比较简单并且冷却效率较高,大多数四翼型RFQ能够在高占空比甚至连续波(CW)稳定运行;但是在低频段应
放射性次级束装置是用于产生、分离、纯化和研究放射性核束的装置,利用放射性核束可以开展物理、材料、生物等领域的科学研究工作。目前,国内外已有许多正在运行、建造或计划建造的放射性核束装置。  HFRS是HIAF装置上基于In-flight方法产生放射性核束的装置,典型238U束能量可达800MeV/u,流强3×1011pps。它由预分离器和主分离器组成,初级束在预分离器中轰击薄靶得到次级束,并进行初步
离子束由于具有倒转的深度剂量分布和Bragg峰附近相对较高的生物效应,被国际肿瘤放射治疗界公认为是目前最先进,最有发展前景的放疗用射线。相对生物学效应(RBE)是离子束治疗中极为重要的参数,实现离子束RBE精确计算是实现离子束精准治疗的重要前提。由于离子束RBE的影响因素十分复杂,因此需要建立相应的生物物理模型才能实现临床治疗中的离子束RBE计算。然而,当前国内外的RBE模型均存在各种局限,因而严
学位
合肥光源是向国内外用户开放的第一台以真空紫外和软X射线为主的专用同步辐射光源,为材料科学、生命科学、信息科学等领域提供了先进的研究平台。针对合肥光源(HLS-Ⅱ)辐射防护与安全监测的需求,研制了一款中子监测仪,用于监测场所与环境中子的剂量率等参数的测量。HLS-Ⅱ的辐射防护系统是基于EPICS(Experimental Physics and Industrial Control System)架
堆内熔融物滞留(In-vessel Rentention,IVR)策略是先进三代压水堆,包括AP1000、CAP1400以及华龙一号等广泛采用的重要严重事故缓解措施。在堆芯熔融情况下,该策略通过在压力容器外表面建立自然循环的方式冷却压力容器下封头,避免熔融物融穿下封头从而保持压力容器完整性,防止熔融物和混凝土反应等严重事故后果。确保在冷却过程中外表面热流密度不超过临界热流密度(Critical H
学位