【摘 要】
:
APE1是参与碱基切除修复(BER)途径的人体必需蛋白,被认为是恶性肿瘤与心血管疾病的血清学生物标志物。同时,APE1是降低机体对抗癌药物耐药性的有效作用靶点。目前,对APE1的检测与调控缺乏直接手段。核酸适配体(aptamer)是一段寡核苷酸分子,通过折叠成的空间结构可以高特异性识别目标分子。核酸适配体与APE1的底物是同一类型的分子,提供了竞争性结合的可能性。本研究首次以APE1为靶标进行适配
论文部分内容阅读
APE1是参与碱基切除修复(BER)途径的人体必需蛋白,被认为是恶性肿瘤与心血管疾病的血清学生物标志物。同时,APE1是降低机体对抗癌药物耐药性的有效作用靶点。目前,对APE1的检测与调控缺乏直接手段。核酸适配体(aptamer)是一段寡核苷酸分子,通过折叠成的空间结构可以高特异性识别目标分子。核酸适配体与APE1的底物是同一类型的分子,提供了竞争性结合的可能性。本研究首次以APE1为靶标进行适配体体外筛选(SELEX)。经高通量测序、序列分析及对比,获得4个家族适配体序列,最终选取四条候选适配体APT-D1、APT-D72、APT-D268、APT-T79进行后续研究。q-PCR法测定了候选适配体与APE1结合亲和力,结果表明,APT-D1、APT-D72、APT-D268、APT-T79亲和力常数Kd分别为1.306±0.1418 n M、4.087±0.4812 n M、7.052±1.875 n M、6.506±1.216 n M,均在纳摩尔范围,表明候选适配体与靶标有较高亲和力。q-PCR和磁珠-ELASA(Enzyme Linked Aptamer-sorbent Assay)检测了APE1候选适配体的特异性,结果显示,适配体APT-D1和APT-D72具有较高特异性,APT-D1(P<0.001)、APT-D72(P<0.01)。血清特异性结果表明适配体APT-D1可以高特异性识别结、直肠癌等APE1血清学疾病患者的血清,EMSA结果进一步表明适配体APT-D1与APE1的特异性结合。血清稳定性实验提示,该适配体能够在10%人血清环境中稳定存在24h。因APE1可识别并切割双链中AP位点,选用10%Native-PAGE表征酶切结果,结果显示,适配体APT-D1能够很好抑制APE1酶切活性。NUPACK预测适配体APT-D1二级结构,将茎环结构截短,获得三条截短适配体,酶切结果显示D1-3抑制能力最强。细胞荧光实验表明,适配体D1-3能够特异性识别并进入A549细胞等APE1高表达细胞株内部,可实现与带有AP位点的DNA纳米管(Nano-AP)在A549细胞内共定位。细胞荧光实验和CCK8实验表明在细胞内适配体D1-3也可进一步有效抑制APE1活性,抑制A549细胞增殖。
其他文献
生命体的新陈代谢离不开天然酶的酶催化作用。然而,天然酶存在稳定性低,生产成本高以及容易失活等缺点,这就限制了天然酶的广泛应用。近年来,模拟酶因可克服天然酶的缺点,受到了研究者们的青睐。金属有机框架(MOFs)因有着独特的理化性质,与其它模拟酶相比,基于MOFs的模拟酶具有更易接近的催化位点和优异的酶催化特性。因此,基于MOFs模拟酶的探索与发展的研究表现出巨大的潜力。本文合成了卟啉金属有机框架材料
能源在人类社会发展中一直充当着独一无二的角色,一直是社会的核心问题。化石能源不可再生,且燃烧产物污染严重。因此,现代社会急需可再生的清洁新能源。氢能具有地球储量丰富、燃烧生成水无污染和热值高等优点,具有可观的发展前景。储氢材料与技术是氢能发展的瓶颈。新型Sm-Mg-Ni系超晶格储氢合金具有储氢容量高、吸放氢循环稳定性强等优点,备受科研人员的关注,成为有前景的储氢材料。为了充分揭示Sm-Mg-Ni系
在MXenes大家族中,V2CTx材料有着比表面积大、导电性高及机械性好等优点。聚苯胺(PANI)作为一种导电聚合物具有制备简单且价格低廉的优点。目前,因V2CTx和PANI各自独特的物理和化学性能,它们作为锌离子电池的正极材料逐步受到人们的关注。本文先采用氟化铵刻蚀与四甲基氢氧化铵(TMAOH)剥离相结合的方法制备V2CTx,并基于大分子质子酸对PANI的优化,制备了对甲苯磺酸掺杂的PANI,再
随着经济的发展,人们对便携式电子设备的需求越来越高,开发更加经济环保的新型储能体系势在必行。相比传统的无机电极材料,具有结构灵活、原料丰富、环境友好和易于功能化等优点的有机电极材料日益受到重视。其中新型醌类材料芘四酮(pyrene-4,5,9,10-tetraone,PTO)具有空间位阻小、氧化还原电位高的优势,其4个活性位点均能对金属离子进行存储,理论比容量高达409 mAh g-1。然而,跟大
聚合物基涂层因其具有良好的物理化学性质、成本低和工艺简单等优势而广泛应用于建筑、汽车和航空等多种领域。在长期服役过程中,由于外部环境侵蚀和内部老化等因素,涂层不可避免地会产生不同尺度的微裂纹。包埋自修复微胶囊能够有效修复涂层裂纹,从而延长涂层使用寿命,保护基材免受损伤。然而,微胶囊自修复技术依赖于微胶囊的一次性破裂,无法在相同裂纹位置进行反复自修复。在相应裂纹位置实现损伤指示就成为评估自修复涂层使
有机磷农药作为一种高毒性、高效的杀虫剂、除草剂,被广泛用于农业生产领域,以杀灭各种病虫害,提高农作物产量。然而,农药的不合理使用,造成了其大量残留于农作物及环境之中,不仅污染生态系统,同时也对人类的生命安全造成严重威胁。因此,建立快速、准确以及高效的农药残留检测方法至关重要。近年来,基于先进功能化纳米复合材料修饰电极的电化学生物传感器在农残检测领域迅速发展。它克服了传统色谱法繁琐复杂的前处理过程,
随着锂电池的快速发展,对于负极材料的倍率性能也有了更高的需求,高倍率长循环的负极材料具有了更大的市场。石墨作为一种传统的负极材料,具有产量大,价格便宜,充放电平台低的优势,其充电比容量为372 mAh·g-1,有着广泛的市场前景,也是当下使用最为广泛的负极材料。可是在实际应用中,石墨材料具有容量低,循环性能,倍率性能差的缺点,在直接使用的情况下并没有特别好的实际效果。本研究针对石墨负极在倍率性能上
为了满足军民领域对宽频及多功能吸波材料的迫切需求,国内外对新型吸波材料的开发展开了大量的研究。而应用环境具有腐蚀性的海上装备,为吸波材料的开发带来了新的挑战。相比于传统吸波材料,海上装备用吸波材料除了需满足强吸收、宽频响应、厚度薄等吸波要求的综合指标外,还需要具有防腐蚀、抗氧化的特性。同时,制备方法的难易程度直接决定了材料的经济效益,因此寻求简单高效的制备方法也是开发新材料的研究要点之一。铁磁金属