孤子方程族的可积耦合系统和分数阶Hamiltonian结构

来源 :大连理工大学 | 被引量 : 8次 | 上传用户:maoxinlan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究的主要内容包括:运用李代数,首先给出一些方程族的可积耦合系统的构造模式,并且给出了非等谱情形的离散可积耦合系统。进而讨论了连续和离散方程族的零曲率表示的李代数结构。另外,还介绍了孤子族的生成及Hamiltonian结构,Liouville可积性。最后利用分数阶微积分给出了孤子方程的分数阶Hamiltonian结构。其具体内容为:第一章介绍了孤立子理论,可积系统,非线性发展方程精确求解,分数阶微积分的历史发展及研究现状,同时介绍了国内外学者在这方面取得的成果。第二章简要的介绍了Kac-Moody代数,Hamiltonian函数的概念及相关的性质。详细的阐述和介绍了AC=BD理论中的一些相关的定理和性质及其在这个框架下的一些重要应用。第三章首先从新的谱问题出发导出一族矩阵Lax可积方程族,并获得它的Hamiltonian结构。另外从Lax对出发,采用提出的谱扩张方法得到了许多新的可积耦合方程族,在此基础上,把这种方法推广到高维空间,并获得了一系列的多分量可积耦合方程族。但是利用这种方法不能得到可积耦合方程族的Hamiltonian结构(尤其是多分量可积耦合方程族的Hamiltonian结构),针对此问题,文中给出广义的killing内积,并且运用广义的二次迹恒等式获得了多分量耦合系统的Hamiltonian结构。其中给出了多分量Jaulent-Miodek方程族,多分量2+1维GJ方程族和耦合Dirac方程族的Hamiltonian结构。另外利用一个广义的矩阵谱问题,得到了耦合方程族的R-矩阵。其中以AKNS族为例,得到了耦合AKNS方程族的R-矩阵。第四章从loop代数(?)1的一个子代数出发,利用屠格式求出了一类离散情形Lax可积耦合的系统,并且得到非等谱的离散可积方程族和耦合系统,另外我们还提出了2+1维非等谱离散可积耦合形式,利用谱参数λ满足的非等谱条件,得到了Blaszak-Marciniak晶格方程的耦合系统。国际著名杂志《Physics Letters A》的编委A.R.Bishop对此种方法给出了很好的评价“The method gives two kinds of classification to a soliton equation,itis an interesting and important work”。另外,进一步考虑了离散系统Darboux变换。最后讨论了离散可积方程与连续可积方程的联系,通常人们采用的是对势函数作变换,而文中采用对算子作变换,利用计算机软件通过比较算子的系数,得到了很好的结果,并且把一个新的离散方程转化成AKNS方程。这样做不仅可以建立离散与连续方程之间的关系,更重要的是可以通过连续型方程的精确解(解析解)获得相应的离散方程的数值解,这样就可以得到更多,更好的数值解。第五章在整数情形可积系统的基础上,进一步考虑分数形的Hamiltonian结构,文中运用了外微分与分数阶微积分结合,给出了分数空间和分数形式的Hamiltonian形式。在这里主要考虑要把整数情形的结论发展到分数情形,建立一套分数阶Hamiltonian结构和可积系统。我们已经完成了分数阶零曲率方程的构造,得到了分数阶情形的AKNS方程和C-KdV方程,并且给出了它们简单形式的Hamiltonian函数。另外利用Riemann-Liouville分数阶算子和分数形式的Possion括号,把Hamiltonian结构的辛形式推广到分数阶情形。
其他文献
随着新型传感器的应用和空间探测技术的发展,遥感图像空间分辨率越来越高,这些高分辨率图像的出现在拓宽了遥感图像处理应用领域的同时,也提出了极大的挑战。港口目标是重要
为了解长期使用大棚对土壤微生物的影响,选取使用10、15、25a的蔬菜大棚,对其土壤中主要微生物类群和部分功能微生物类群进行研究。结果表明:随着使用大棚进行蔬菜栽培年限的
本文在论述建设创新型国家的意涵、特点及找出我国差距的基础上,指出要缩小该差距,其关键是建设一支高素质的创新型科技人才队伍。而要建设这支队伍。又必须以创新发展我国大学
深入了解贫困村留守人群的现状及存在的问题,对于提高精准扶贫、精准脱贫实效性,以及完善农村社会治理机制、统筹城乡发展等方面都具有十分重要的基础性意义。通过深入调查分
抗菌肽是一类小的宿主防御蛋白,它能保护植物、动物等多细胞机体免于感染。LL-37是Cathelicidin家族中唯一的存在于人体中的抗菌肽,它能发挥抗菌、抗病毒、抗肿瘤以及免疫调
家训又称庭训、庭诰、家诫、家范等,一般是父祖对子孙、家长对家人、族长对族人的训示、教诲.也包含兄姐对弟妹的告诫、夫妻之间的嘱托。①家训是家族核心价值观的集中体现,“训
目的:探讨小儿肺炎支原体肺炎应用X射线和CT检查的临床价值及影像学特征。方法:选取200例疑似肺炎支原体肺炎患儿,分别应用X射线和CT进行检查诊断,并以中后期病原学检查为准,
目的:下前牙区种植由于牙槽骨窄小和解剖结构的限制,一直是临床上种植修复的难点之一。前牙反(牙合)在下颌前伸、侧向及运循环等方面与正常合者存在差异,所以前牙反(牙合)的种植修复需要考虑种植体的位置,更要考虑反的学运动规律。本文的主要目的是观察前牙反(牙合)患者下前牙区种植修复的临床效果,探讨前牙反(牙合)者下前牙区牙槽骨的特点以及对种植的影响,深入理解前牙反(牙合)的种植特点。资料与方法:选取5名前
十八大以来党对社会治理和社会组织的改革发展做出了重点强调和要求之后,社会治理的局面在政府、企业和社会组织的共同努力下焕然一新。十九大也对加强和创新社会治理提出了
研究背景:肱骨髁上骨折是一个发生肱骨远端干骺端区域开放或闭合的,但不包含带有髁间和同时跨内外侧柱的骨折。这是最常见的儿童骨折,约占所有儿童肘部骨折的58%。骨折分型源