模糊环境下的对称蕴涵推理及其性质研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:ck101newguy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
推理对于人工智能的发展起着至关重要的作用,早期的人工智能主要就是依赖于逻辑推理能力。而模糊推理作为推理概念的延伸,有着较为广阔的适用领域。在此基础上,直觉模糊集的提出又丰富了模糊推理的内涵。以往的普通模糊集在表达具有模糊性的信息上具有局限性,而直觉模糊集在表达这样的信息有着普通模糊集所无法比拟的优势。目前在模糊推理领域上主流的算法有,CRI算法,全蕴涵三Ⅰ算法等。但是这些算法局限于普通模糊集,应用领域受限。后来又有学者在这些普通模糊集推理算法的基础上提出了直觉模糊集上的推理算法。但无论是普通模糊集的推理算法,还是直觉模糊集上的推理算法,将蕴涵算子保持一致都会导致响应性能不足,并且对于求出的解的最优性缺乏合理的解释。基于此,本文根据对称蕴涵的理论提出了直觉模糊熵对称蕴涵算法,将直觉模糊熵与对称蕴涵算法相结合。首先,本文给出了该算法的规则,并求出了该算法一般形式的解,另外对于模糊推理算法中的还原性和连续性这两个重要性质进行了讨论并加以证明。保证了新算法的可行性和实用性。最后,在此基础上将该算法进行了拓展,提出了α-直觉模糊熵对称蕴涵算法和α-直觉模糊熵对称蕴涵约束算法。并在具体数据集下新算法相较于全蕴涵三Ⅰ算法有着更好的表现。本论文的主要工作如下:1)提出了直接模糊熵对称蕴涵算法,给出了该算法的定义,求出了在IFMP问题和IFMT问题下解的一般形式,并对解的还原性和连续性进行了讨论和证明;此外对算法行了推广,提出了α-直觉模糊熵对称蕴涵算法和α-直接模糊熵的对称蕴涵约束算法。给出了这两种算法在IFMP问题和IFMT问题下的解的一般形式,为了证明算法的优越性,举出了具体的实例,从结果来看新算法表现更好。2)针对FMT问题提出了α-对称I*蕴涵算法和α-对称I*蕴约束算法。给出了算法的基本规则和定义,在FMT问题上,给出了这两个算法的求解过程,并讨论了基于R-蕴涵,(S,N)-蕴涵下解的形式。3)研究了 α-对称蕴涵算法的区间摄动问题。主要针对三类情况,单规则下的区间摄动,多规则下的区间摄动以及简单摄动。给出了当采取R-蕴涵,(S,N)-蕴涵,时,对输入值摄动后,α-对称蕴涵算法解的变化范围。给出了α-对称蕴涵算法稳定性需满足的条件。
其他文献
随着互联网和大数据技术的发展,许多应用领域如新闻检索、淘宝购物和银行交易等产生海量的流式数据。不同于传统数据挖掘任务中采用的静态数据,这些数据流具有海量、快速、标签缺失、概念漂移或概念演化的特点,同时,由于存在多标记加剧类不平衡与类标签噪声问题,使得数据流的分类研究工作面临巨大挑战。因而如何从标签缺失的数据流中高效精准地挖掘潜在的、富有价值的信息成为数据流分类问题研究的重要任务之一。本文旨在充分利
近年来,我国国民经济发展很快,带动了我国电信行业稳定增长,目前正在研发5G关键技术和产品,需要打造系统、芯片、终端、仪表等完整产业链,重点推进骨干网、城域网、固定宽带接入网、移动宽带接入网、国际通信网和应用基础设施建设,要求升级改造国干网光缆线路,推进双向网、光纤化改造。因此,进入通信电缆人孔内布放光缆、光缆管路施工或障碍维修工作情况日益频繁。通信电缆人孔属于传输网络必经场所。类似于通信电缆人孔的
遥感卫星携带的传感器受到自身性能的约束,采集的单一遥感影像数据的无法兼得高空间分辨率和高时间分辨率的问题。遥感图像时空融合技术是当前解决此问题的重要手段之一,该技术通过结合多个卫星传感器的不同优势得到高时间、空间分辨率的影像数据。就融合数据而言,由于时间间隔较大,预测时刻图像相对于先验时刻图像局部区域发生了地物变化,造成基于先验时刻图像对在变化区域构建的高低分辨率先验失效。就稀疏表示方法而言,方法
在互联网发达的信息化时代,海量文本信息的表示、存储、传输和利用已非常普遍,但有价值的信息获取却让人们陷入困境,导致“信息发达,知识贫乏”。如何在我们生存环境周围,从海量数据中挖掘出有潜在实际意义和价值的信息成为目前亟待解决的研究热点问题之一。在日常工作和生活中,我们接触到绝大多数数据信息都是以文本格式存在的,人们一直渴望能够找到一种高效的工具,能够依据文本信息主体的不同特征,对这些海量文本数据进行
无线传感器网络(Wireless Sensor Network,WSN)在交通管理、智能监控、智能建筑、军事侦察、环境监测领域都有着广泛的应用。无线传感器节点的电池能量有限,特别是在特殊监测的环境中,更换电池的难度增加,导致电池的能量消耗殆尽,网络质量变差。因此,如何延长WSN的寿命,保证节点的能量供应是尤为重要的研究话题。此外,随着网络规模的不断增大,节点间传输数据时产生的干扰也越发严重,由于无
在大数据驱动下的数字化社会中,个人的身份认证变得尤为重要,在此背景下,越来越多的身份认证方式应用在各个领域。掌纹识别作为一项新兴的生物特征识别技术,在过去的二十年里,多种传统掌纹识别方法被提出应用于相关场景中。近年来,深度学习的兴起为多项任务实现了新的突破,掌纹识别也逐渐在深度学习领域展开研究。然而,目前大多数深度掌纹方法往往只是简单的使用存在的经典神经网络完成识别任务,并没有充分的学习掌纹本质特
视觉问答是一种跨模态分析推理任务,其目的是回答基于图片内容提出的自然语言表述的问题。一个完整的视觉问答过程通常被分为三个过程:特征提取、特征选择与融合、预测分类。其中特征选择与融合过程负责跨模态特征交互和对齐,是视觉问答任务的核心。为了实现跨模态特征的更细粒度交互与筛选,本文对视觉问答的特征选择与融合算法展开研究。本文的主要工作如下:(1)现有的视觉问答模型普遍使用注意力机制来选择跨模态输入中的关
随着互联网的发展,越来越多的创作者在社交媒体上发表文章。如何从大量的多媒体文章中自动过滤出高质量的内容,是信息推荐、搜索引擎等系统的核心功能之一。然而,现有的方法存在三个局限性:(1)已存在的方法一般将内容建模为词序列,从而忽略了长距离单词依赖以及非连续短语。(2)由于现有的方法大多只关注文本内容,忽略了社交媒体平台上的内容具有多模态信息(如:文本、图像)。(3)它们依赖大量人工标注的数据来训练质
迁移学习是一种利用从源领域数据中提取的模型对目标领域数据进行辅助训练的方法,旨在解决分布不同以及标记缺失的目标领域训练问题。已有的迁移学习方法大多基于特征表示学习将不同领域中的数据特征映射到一个不变的特征空间,从而增强目标领域训练。在基于特征表示学习的迁移过程中,其目标函数通常需要从多方面来进行领域间的分布差异度量,常见的有边缘分布、条件概率分布以及类别分布。现有的方法对不同的特征差异度量采取固定
目标检测是目前计算机视觉中重要且基础的问题,有广泛的应用背景和实用价值。该任务是在输入图像中定位目标,并在图像中识别出每个物体的类别和位置。近年来,随着大规模数据的出现以及计算机算力的不断提升,具有强大数据拟合能力的深度神经网络方法逐渐成为目标检测研究领域中的主流方法。在现有的目标检测方法中,检测器实现了先进的性能。但是,当前目标检测模型对上下文信息和多尺度信息感知能力仍存在提升的空间。另外,现有