论文部分内容阅读
煤层气作为一种非常规天然气资源,是改善我国一次能源消费结构的重要清洁能源。然而,由于煤层气储层渗透性较低,通常需采用压裂技术对储层进行增渗改造。目前,对煤层气的开采大多是照搬石油行业中的压裂工艺技术及参数,但与石油储层脆性特征相比,煤层气储层通常呈现“碎软”特性,其破坏形式表现为韧性破坏,即应力峰值后存在明显的应变软化区。已有压裂工艺,无论是垂直井,还是水平井,其在脆性度高的储层中压裂效果较好,但同样面临着成功率低、开发成本高、单井产量低等问题。此外,虽然我国煤层气资源丰富,但中低阶煤层气资源占比高达78.9%,从近几十年开采效果来看,该类储层由于其弹性模量小、脆性度低,导致在煤层中直接进行水力压裂作业时裂缝延展性差,裂缝短、宽,储层改造体积有限,且由于储层赋存条件差异较大,导致开采工艺区域适配性极差。因此,如何提高低渗煤系储层渗透率,实现煤层气工业化开发是亟待解决的关键科学与工程难题。本文以低渗煤系地层为研究对象,基于煤层顶板水平井定向水力压裂开采工艺技术(间接压裂),从科学试验角度出发,结合理论分析与数值模拟,揭示水力压裂裂缝跨界面扩展临界条件、多裂缝最优布置间距,优化了水平井布置层位;探究应力、界面强度、压裂流体、注液流量、顶板岩性及水平井层位等因素对裂缝跨界面扩展的影响。此外,建立了多因素耦合作用下水力裂缝跨界面扩展预测模型。主要研究内容与结果如下:(1)通过TCHFSM-Ⅰ型大尺寸真三轴压裂渗流模拟装置进行了煤岩组合体水力压裂试验,探究煤岩界面强度、应力对水力压裂裂缝跨界面扩展的影响,揭示注液压力演化规律及声发射动态响应特征。研究结果表明:(1)应力、界面强度显著影响水力裂缝跨界面(岩体→煤岩界面→煤体)扩展规律,裂缝跨界面扩展存在应力阈值,且随着界面强度的增大,应力阈值逐渐减小;(2)水力裂缝极易在弱界面强度处发生偏转,且随着煤岩界面强度的逐渐降低,裂缝偏转现象越显著;(3)水力裂缝贯穿煤岩界面时,注液压力呈现二次抬升现象,且声发射事件占比增幅高达51.4%,而当裂缝未能贯穿界面时,未发现二次起裂现象,此时声发射事件增幅仅为6%。(2)基于大尺寸天然煤岩体试件探究了应力差异系数、压裂流体及注液流量对水力裂缝跨界面扩展的影响,讨论了水力裂缝跨界面扩展机理。研究结果表明:(1)应力差异系数η≥2.00时,水力裂缝能够贯穿煤岩界面,形成有效裂缝,反之,裂缝沿界面扩展或在界面处止裂;(2)相较于注液流量、压裂流体,地应力是制约水力裂缝与煤岩界面交互扩展规律的主控因素。此外,低流量清水压裂时,压裂井筒周围裂缝较为复杂;采用超临界二氧化碳压裂时,远、近场裂缝均呈现复杂缝网结构。(3)高注液流量与高黏度的压流液有越利于水力裂缝跨界面扩展;反之,压裂裂缝极易沟通界面及层理弱面;(4)清水压裂时,注液流量越大,试件起裂时间越短、其起裂压力越大;采用超临界二氧化碳压裂时,起裂压力较低,相比同流量条件下的清水压裂,起裂压力降低5.79 MPa,衰减近39.3%。(3)基于注液压力、声发射、动态散斑及3D形貌扫描技术,研究不同裂缝间距条件下多孔水力裂缝扩展规律,直观地揭示水力裂缝与界面动态交互扩展形态,并对裂缝断面形貌进行数字化表征。研究结果表明:(1)不同裂缝间距条件下,多孔裂缝扩展形态显著不同,存在临界裂缝间距,即50 mm;(2)当裂缝间距为10 mm时,左、右两侧压裂孔流量占比分别为49.86%、41.63%,中部压裂孔流量占比仅为8.51%,当裂缝间距较大(≥50mm)时,中间孔应力阴影效应逐渐减弱,三个压裂孔流量分配逐渐均衡,占比均为33%;(3)水力裂缝与界面交互时,裂缝首先贯穿人工预制裂缝,然后在沟通预制裂缝,形成复杂的“┼”型裂缝形态;(4)水力裂缝呈现椭圆形扩展形态,且该裂缝椭圆形区域向试件两侧界面扩展过程中,并未呈现出双翼对称性扩展的形态,而是以单翼形态扩展并贯穿人工预制裂缝;(5)压裂后,裂缝尖端最大位移为4.2192×10-1 mm,最大应变为7.0317×10-3,清水压裂时裂缝壁面粗糙度为6~10。(4)基于线弹性断裂力学建立了多因素耦合作用下水力裂缝与界面交互扩展预测模型,并基于弹塑性断裂力学探究了弹性模量、水平井距界面距离对裂缝跨界面扩展的影响,优化水平井层位布置。研究结果表明:(1)水平井距煤岩界面距离较近、较远时,水力裂缝跨界面压裂效果较差,存在最佳水平井布置间距。同时,由于顶板岩性的不同,水平井最佳布置间距也不相同;(2)数模模拟研究表明,相较于线弹性本构方程,采用弹塑性本构方程计算求解时能够准确的表征与预测水力压裂裂缝跨界面扩展规律,数模结果与试验结果一致;(3)建立了不同交汇角度、界面摩擦、应力状态等多因素耦合作用的水力裂缝跨界面扩展预测模型,并在物理试验的基础上加以验证。针对低渗煤系储层煤层气的开采,建议采用间接压裂技术,该技术不仅客服了在本煤层中钻井难、易垮孔差等难题,而且能有效促进裂缝的延伸扩展。对于间接压裂技术,应优先布置在应力差异较大的地质区域,尤其适用于深部储层。与此同时,水平井的层位布置应根据顶板岩层赋存情况及应力条件进行优选设计,采用高粘度压裂液,通过大排量携砂压裂工艺技术,促进水力裂缝跨界面扩展。此外,当水平井抽采至衰减期时,可采用超临界二氧化碳压裂进行二次改造,增加远、近场裂缝形态,延长抽采年限。