论文部分内容阅读
本文采用激光表面合金化技术在Fe基、Ni基和cp Cu工程上常用的传统材料表面制备出多主元高熵合金化层,并利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、纳米压痕仪、空蚀试验机、电化学工作站、摩擦磨损试验机和马弗炉对所制备的激光高熵合金化层热处理前后的相组成、显微组织、化学成分、硬度、空泡腐蚀性能、电化学腐蚀性能、摩擦磨损性能和高温氧化性能进行分析,同时探索了高熵合金简单固溶体相的形成及转变规律,旨在研究和发展新型高性能激光防护涂层。实验结果如下:在Q235钢表面制备了FeCoCrAlCu激光高熵合金化层。FeCoCrAlCu激光高熵合金化层组织均匀致密,无气孔等冶金缺陷,与基体间呈良好的冶金结合。热处理前以及600℃-10h、700℃-10h热处理后,激光高熵合金化层的相结构均为BCC固溶体;800℃-10h热处理后,激光高熵合金化层中沉淀析出σ-FeCr相。热处理前、600℃-10h、700℃-10h和800℃-10h热处理后激光高熵合金化层的平均显微硬度分别为820HV、660HV、520HV和690HV;其抗空蚀性能(Re)分别为2.0、3.1、2.4和2.5,经过600℃-10h热处理激光高熵合金化层具有最佳的抗空蚀性能。在304不锈钢表面制备了FeCoCrAlNiTi、FeCoCrAlNiTi-x TiC和FeCoCrAlNiTi-xCeO2激光高熵合金化层。FeCoCrAlNiTi激光高熵合金化层的相结构为FCC+BCC固溶体结构。激光高熵合金化层经过700℃-10h热处理后相结构未发生变化,而经过800℃-10h和900℃-10h热处理后其相结构中出现了金属间化合物相。热处理前、700℃-10h、800℃-10h和900℃-10h热处理激光高熵合金化层的平均显微硬度分别为630HV、642HV、698HV和727HV。基材、热处理前、700℃-10h、800℃-10h和900℃-10h热处理激光高熵合金化层在3.5%NaCl溶液中的抗空蚀性能仅为其在蒸馏水中的20%、68%、61%、29%、26%。FeCoCrAlNiTi-xTiC和FeCoCrAlNiTi-xCeO2激光高熵合金化层热处理前后的相结构没有发生变化,基体相均为FCC+BCC固溶体结构。对于FeCoCrAlNiTi、10wt%TiC、30wt%TiC以及10wt%TiC-700℃、30wt%TiC-700℃激光高熵合金化层,磨损率分别为2.437×10-4mm3/N m,6.529×10-5 mm3/N m,2.636×10-5 mm3/N m,1.098×10-4 mm3/N m,3.542×10-5mm3/N m。对于0.5wt%CeO2,1wt%CeO2以及0.5wt%CeO2-700℃,1wt%CeO2-700℃激光高熵合金化层,磨损率分别为6.44×10-5 mm3/N m,2.748×10-5 mm3/N m,8.244×10-5mm3/N m,3.985×10-5 mm3/N m。在Ni201合金表面制备了FeCoCrAlCuNiVx激光高熵合金化层。FeCoCrAlCuNiVx激光高熵合金化层随着V含量的增加,相结构由FCC(x=0和x=0.2)向FCC+BCC(x=0.5,x=0.8和x=1.0)固溶体转变。经过700℃-10h热处理后,x=0、x=0.2合金化层相结构由FCC向FCC+BCC固溶体转变;x=0.5和x=0.8合金化层相结构未发生变化;x=1.0激光高熵合金化层中出现了金属间化合物相。FeCoCrAlCuNiVx激光高熵合金化层的氧化的动力学曲线近似呈抛物线规律,x=0.2和x=0.5激光高熵合金化层的抗高温氧化性能最佳。在cp Cu表面制备了FeCoCrAlCu-X0.5(X=Si、Mo和Ti)激光高熵合金化层。对于X=Si激光高熵合金化层,相结构为FCC+BCC固溶体;对于X=Mo和X=Ti激光高熵合金化层,相结构中出现了金属间化合物相。激光高熵合金化层的显微形貌呈枝晶与枝晶间组织。经过700℃-10h热处理后,对于X=Si和X=Ti,其相结构没有发生变化;对于X=Mo,其合金化层内沉淀析出σ-FeCr相。Mo主元的加入可以显著细化合金化层的组织,并且X=Mo激光高熵合金化层具有较低的弹性模量和较高的纳米硬度。X=Si激光高熵合金化层的腐蚀电流密度最低,耐蚀性最佳。基于混合熵(ΔSmix)、混合焓(ΔHmix)、原子尺寸差(δ)、价电子浓度(VEC)和参数Ω预测参数模型,对高熵合金简单固溶体形成的影响规律进行系统地分析,研究发现:高混合熵效应并不是高熵合金体系简单固溶体形成的唯一因素。形成固溶体相高熵合金的ΔSmix至少大于11.53 J/K mol,ΔHmix应在-16.48 kJ/mol至3.2 kJ/mol之间,参数Ω至少大于1.18,δ小于6.19。当VEC在7.14-8.12之间,促进FCC+BCC固溶体的生成;VEC小于7.14时,促进BCC固溶体的生成;VEC大于8.12时,促进FCC固溶体的生成。